Exploring Remote Sensing Applications for Electric Utilities

Jason Parent, Chandi Witharana, Xinyi Shen
Remote sensing platforms

- Can be mounted on satellite, aircraft, motor vehicles, or tripods.

- LiDAR
- Aerial imagery
- SAR, Sentinel
- Ground imagery
Sensors

Light Detection and Ranging (LiDAR)

Spectral Imagery

Synthetic Aperture Radar
LiDAR (aerial, low-resolution)

- Freely available in CT
- Useful for modeling:
 - terrain
 - forest canopy
 - land cover
Measuring forest canopy height

Forest Canopy Height Model
• Estimate of height at any given location
Identifying tree risk to infrastructure

- Use canopy height model to identify locations where trees are capable of striking power lines.
Evaluating tree risk due to environmental conditions

- Can environmental conditions help predict tree susceptibility?
- What conditions make trees susceptible to breakage or windthrow?
 - Poor wind adaptation
 - Shallow roots
 - Wind exposure
 - Trimming history
Validating a vegetation risk model

- Do trouble spot locations differ from locations with no trouble spots?
 - Compare statewide using airborne LiDAR and GIS data
LiDAR (aerial, moderate-resolution)

- Useful for modeling:
 - Tree crowns
 - Small features
 (e.g. utility poles)
LiDAR (aerial, moderate-resolution)

Utility poles and wires

Tree tops and crowns

Products provided by vendor

- Poles
- Wires
- Tree tops
- Tree crowns
LiDAR (aerial, moderate-resolution)

Proximity of vegetation to wires

Distance from wires

- Veg. > 12’
- Veg. 8-12’
- Overhanging veg.
- Veg. 2-8’
- Veg. < 2’

Products provided by vendor
LiDAR (mobile, high resolution)

• Useful for providing data for engineering analyses. E.g., utility pole integrity mapping infrastructure obscured by tree cover.
LiDAR (mobile, high resolution)

Pole height

- <32’
- 32-37’
- > 37’

Pole lean > 10°

Products provided by vendor

- ≤ 10°
- > 10°
Extracting information from LiDAR

- Large share of project costs, if done by vendor
- EEC goals include development of algorithms to automate in-house feature extraction.
Extracting information from LiDAR

• Point cloud analytics for automated extraction of pole attributes (height, lean, diameter)

<table>
<thead>
<tr>
<th>height (ft)</th>
<th>lean</th>
<th>Mean diameter (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 39</td>
<td><10°</td>
<td>~ 12</td>
</tr>
</tbody>
</table>
Mapping with aerial imagery

- Aerial imagery is freely available for all of Connecticut.
- Explored feasibility of mapping utility poles and wires from aerial imagery.
 - 1400 student-hours invested
 - 100,000+ poles mapped
 - 42 towns completed
- Estimated time and cost for completing all towns:
 - 3500 student-hours
 - < $50K (at $12 / hour)
Google street-view (GSV) imagery

• GSV is freely available for the majority of roads in Connecticut.

• Outstanding dataset for classification of utility equipment that are difficult to identify in LiDAR point clouds (e.g. transformers, etc.)

• EEC is working on developing machine learning techniques to help automate identification of features seen in GSV.
Feature identification from GSV

• Complementary to accurate feature positioning provided by LiDAR point clouds.
Evaluation of GSV classification algorithm

• Cross-arm identification algorithm tested on > 900 poles.
• Detection accuracy ≈ 80%
• Locations triangulated from overlapping images; positional accuracy generally < 10 meters
 • Close enough to match to locations provided by LiDAR.