
A Geršgorin Theory for Robust Microgrid Stability
Analysis

Yan Li∗, Peng Zhang†, Lingyu Ren‡ and Taofeek Orekan§
Department of Electrical and Computer Engineering

University of Connecticut, Storrs, Connecticut 06269–4157

Emails: ∗yan.7.li@uconn.edu, †peng@engr.uconn.edu, ‡lingyu.ren@uconn.edu, §taofeek.orekan@uconn.edu

Abstract—A robust stability assessment approach is presented
to efficiently estimate eigenvalues in microgrids in the presence
of bounded uncertainties. Through this method, all possible
locations of eigenvalues can be directly obtained, which makes
repeatedly eigenvalue calculation unnecessary when dealing
with uncertainties. More importantly, a quasi-diagonalization
technique is established to reduce the conservativeness of the
Geršgorin theory. Extensive tests show that the new method
enables highly efficient analysis on impact levels of disturbances
and offers a useful tool for droop coefficients design which
facilitates microgrids stable operation. Besides, test results show
that the Geršgorin theory based approach can be effectively
combined with other methods to obtain more accurate solutions.
These salient features make the new method a powerful tool for
planning, operating, and designing future microgrids.

Index Terms—microgrid; robust stability analysis; Geršgorin
theory; eigen-analysis; uncertainty; distributed energy resources
(DERs)

I. INTRODUCTION

Microgrid is a promising paradigm to enhance power sup-

ply resiliency for customers [1]. Nowadays, most power-

electronic-interfaced microgrids have very low inertia, making

them highly sensitive to disturbances such as intermittent

generations from PV or wind [2]. Because microgrid is

inevitably subject to small disturbances such as intermittent

renewable generation (coupled with load variations), any mi-

crogrid that is unstable in terms of small perturbations cannot

sustain for long term operations. Quantifying the impact of

various uncertainties (disturbances) on microgrid small signal

stability is fundamentally important for microgrid planning,

operation and control design. Therefore, a principal task in

microgrid analysis is to investigate the small signal stability of

power-electronic-dominated microgrids under uncertain inputs

or outputs, especially under multiple uncertainties (usually

‘unknown but bounded’ uncertainties characterized by sets).

There exist two major categories of methods to assess

small signal stability of microgrids, namely, exact compu-

tational approaches such as QR method and perturbation-

based methods such as matrix perturbation theory [3]. Both

are point-based approaches. When a microgrid is subject

to various disturbances, the former methods need to solve

eigenvalue problems caused by disturbances one by one, which

is extremely tedious and time-consuming. Furthermore, it is

difficult to use these methods to quantify and compare the

impact of different disturbances on microgrid stability [4]. On

the other hand, the latter methods aim at obtaining eigenvalues

without repeated calculations when considering disturbances,

and the basic idea is to discover the impacts of perturbed

parameters on system stability through perturbation analysis.

Because these methods are still point-based analysis, they are

unable to deal with set-based disturbances.

To overcome the limitations of existing technologies, a

novel approach based on Geršgorin theory [5], [6] is developed

to efficiently assess the small signal stability of mcirogrids

under uncertainties. A salient feature of this approach is the

capability of demonstrating and describing variation regions

of eigenvalues which reflect a system’s small signal stability

feature under different disturbances. The major contributions

of this new method include: (i) It is an on-the-fly solution that

directly obtains the location of eigenvalues for a microgrid

subject to disturbances, rather than repeatedly solving the

eigenvalue problem of the microgrid with on-going distur-

bances; (ii) The detailed Gergorin disks information sheds

light on how different disturbances impact microgrid stability,

which can be used to pinpoint critical disturbances; (iii) It

can discover how to change microgrid parameters so as to

shift critical eigenvalues into designed or desirable region,

which can be utilized to design inverter controller parameters

to effectively enhance microgrids stability. Moreover, the new

Geršgorin method can be combined with other stability analy-

sis techniques to significantly enhance their performances. For

instance, since the Geršgorin approach can divide eigenvalues

into different groups, QR method or perturbation theory can

then be applied in each specific group exclusively to get more

accurate locations of eigenvalues in each group.

The remainder of this paper is organized as follows. Section

II introduces the Geršgorin theorem for eigenvalue estimation

under system disturbances. Section III describes the Geršgorin

analysis of a microgrid system. Besides rigorous theoretical

analysis, procedures to get Gergorin disks for a microgrid are

provided as well. Numerical tests are provided in Section IV

which verify the feasibility and effectiveness of the presented

approach. Conclusions are drawn in Section V.

II. GERŠGORIN THEOREM

Geršgorin Theorem is a powerful method for the eigenvalues

estimation of dynamical systems. Considering the nonsingular
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finite-dimensional state matrix of a system A = [aij ] ∈ R
n×n,

the eigenvalue problem is described as follows [7].{
Avi = λivi

ATui = λiui

(1)

where λi is the ith generalized eigenvalue of the system;vi and

uT
i are the ith right and left eigenvector, respectively, satisfying

the orthogonal normalization conditions as shown in (2).{
uT
i vj = δij

uT
iAvj = δijλi

(2)

where δij is the Kronecker sign.

Theorem 1. For any nonsingular finite-dimensional matrix A
with λi as its ith eigenvalue, there is a positive integer k in
N=1,2,. . . ,n such that,

|λi − akk| ≤ rk(A) (3)

where rk(A)
.
=

∑
j∈N\{k}

|akj |. If σ(A) denotes a set of all

eigenvalues of A, then σ(A) satisfies the following condition

σ(A) ⊆ Γ(A)
.
=∪n

k=1Γk(A) (4)

where Γ(A) is the Geršgorin set of nonsingular matrix A;
Γk(A) is the kth Geršgorin disk, and can be expressed as
Γk(A)

.
= {|x− akk| ≤ rk(A), x ∈ R}.

Further details can be found in [5], [6].

III. GERŠGORIN ANALYSIS OF MICROGRIDS UNDER

DISTURBANCES

This section develops an enhanced Geršgorin method that

significantly improves the accuracy of eigenvalue estimation

for microgrids.
A microgrid consisting of DERs, inverters, loads, and net-

work can be expressed by state and algebraic equations [7].

Mathematically, such a microgrid can be described by a set of

differential and algebraic equations (DAEs).{
ẋ = F(x,y,p)

0 = G(x,y,p)
(5)

where x ∈ R
n is the state variable vector; y ∈ R

m is

the algebraic variable vector; p ∈ R
p is disturbance vector.

Linearizing the microgrid system at the initial operation point

(x0,y0), one can obtain the following equations when the

partial derivative matrix of algebraic equations with respect to

algebraic variables Gy is nonsingular.

Δẋ = [Fx − FyG
−1
y Gx]Δx (6)

where Δx = x − x0, Fx(Fy) is the partial derivative

matrix of differential equations with respect to state (algebraic)

variables, Gx is the partial derivative matrix of algebraic

equations with respect to state variables. The small signal

stability feature of a microgrid is governed by the eigenvalues

of its state matrix:

AMG = Fx − FyG
−1
y Gx (7)

where AMG is equivalent to A in Theorem 1.

A. Geršgorin Disk and Set Calculation

After obtaining the system state matrix, the Geršgorin disk

and set can be calculated based on Theorem 1. However, the

estimation result of eigenvalue distribution is usually over-

approximated, when the state matrix is not strongly diag-

onally dominant. According to Theorem 1, the distribution

of eigenvalue (area of Geršgorin disk) is mainly determined

by the non-diagonal elements of state matrix. The more

diagonally dominant a state matrix, the smaller its Geršgorin

disk, i.e., the estimation accuracy of eigenvalue distribution

will be highly improved. Therefore, a quasi-diagonalization

technique is established below to reduce the conservativeness

of Geršgorin theory.

Taking into account the orthogonal normalization conditions

shown in (2), the state matrix AMG under system disturbances

can be quasi-diagonalized as follows.

UT
0AMGV0 = UT

0AMG,0V0 +UT
0AMG,DV0 = S0 + SD

(8)

where AMG,0 is system state matrix at (x0,y0); S0, UT
0 and

V0 are the corresponding eigenvalue matrix, left eigenvector

matrix, and right eigenvector matrix at (x0,y0), respectively;

AMG,D is the increment of state matrix under disturbances,

which is constructed based on a bounded set of uncertainties

and will be analyzed in next subsection; SD is the increment of

eigenvalue matrix. Thus, the eigenvalue problem of a disturbed

system is transformed to the analysis of the matrix SD. And

the following expression can be obtained.

Γk(SD) = {|x− skk| ≤ rk(SD), x ∈ R} (9)

σk(SD) ⊆ Γ(SD)
.
=∪n

k=1Γk(SD) (10)

Therefore, the distribution of each eigenvalue in a system

under uncertainties can be expressed as a Geršgorin disk with

S0 as its center and Γk(SD) as its corresponding area.

B. Disturbances Analysis in Microgrids

To help process the wide variety of disturbances in mi-

crogrids, those uncertainties are divided into groups, i.e.,

fluctuations from DERs, changes of loads, perturbations from

controllers parameters, disturbances of power exchange at the

point of common coupling (PCC), etc. Since the constitutions

of AMG will change accordingly when the system is under

disturbances, they can be generally expressed as follows.

Fx =
NG∑
i=1

Fx,Gi +
NL∑
j=1

Fx,Lj +
NP∑
k=1

Fx,Pk
+ Fx,E + Fx,C (11)

Fy =
NG∑
i=1

Fy,Gi +
NL∑
j=1

Fy,Lj +
NP∑
k=1

Fy,Pk
+ Fy,E + Fy,C (12)

Gx =
NG∑
i=1

Gx,Gi +
NL∑
j=1

Gx,Lj +
NP∑
k=1

Gx,Pk
+Gx,E +Gx,C (13)

where NG, NL, NP are the numbers of DERs, loads and con-

troller parameters subject to changes or disturbances; Fx,Gi
,

Fy,Gi , Gx,Gi are matrices only related to the fluctuations from
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the ith DER; Fx,Lj
, Fy,Lj

, Gx,Lj
are matrices only related to

the changes of the j th load; Fx,Pk
, Fy,Pk

, Gx,Pk
are matrices

only related to the perturbations from the kth parameter; Fx,E ,

Fy,E , Gx,E are matrices only related to the disturbances at

PCC; Fx,C , Fy,C , Gx,C are constant matrices uncorrelated

with any disturbances. Based on (11)-(13), AMG,D can be

obtained as follows.

AMG,D =

NG∑
i=1

MGi +

NL∑
j=1

MLj +

NP∑
k=1

MPk
+ME

+

NG∑
i=1

NL∑
j=1

MGi,Lj +

NG∑
i=1

NP∑
k=1

MGi,Pk
+

NG∑
i=1

MG,E

+

NL∑
j=1

NP∑
k=1

MLj ,Pk
+

NL∑
j=1

MLj ,E +

NP∑
k=1

MPk,E (14)

where MGi , MLj , MPk
, ME represent the increments only

caused by DERs, loads, controllers parameters, power ex-

change at PCC; the cross items MGi,Lj
, MGi,Pk

, MGi,E ,

MLj ,Pk
, MLj ,E , MPk,E represent their mutual effects on the

matrix increment. Their expressions are given in Appendix A.
The advantage of the above matrix decomposition is that it

becomes easy and efficient to calculate the increment AMG,D

when disturbances occur, because only specific sub-matrices

need to be updated. Besides, it provides an efficient tool to

analyze the impacts of disturbances. For instance, it can be

clearly observed from (14) that the increment of state matrix

can be expressed in the form of a combination of disturbances,

which makes it easier to analyze the impact of a specific

disturbance. Moreover, when a bounded set of uncertainties

are introduced in system, it is easy to get the boundaries of

sub-matrices first, and then to obtain AMG,D correspondingly.

IV. TEST CASES

A typical microgrid system shown in Fig. 1 is used to test

and verify the presented approach. The test system includes

three categories of DERs [7], namely non-dispatchable PV,

dispatchable Fuel Cell (FC), and dispatchable Battery. Among

these DERs, PV units are controlled via a maximum power

point tracking strategy (P&O), whereas FC and Battery units

are controlled in droop strategy [7]. Besides, the test system

includes two types of loads [8], namely passive loads (constant

impedance loads: Load2 and Load5 as shown in Fig. 1)

and active loads (inverter-interfaced loads: Load1, Load3, and

Load4 as shown in Fig. 1). The microgrid is assumed to

operate in islanded mode in order to better illustrate the

impact of disturbances on the small signal stability of a power-

electronic-dominant system. Parameters for inverter controllers

are summarized in Appendix B and the rest of microgrid

parameters can be found in [9].
There are 132 eigenvalues in the test system. QR method

is adopted first to calculate the eigenvalues and eigenvectors

at the initial operation point [10]. Critical eigenvalues whose

real parts are within the range [−25, 1] are shown in Fig. 2.
As the microgrid is islanded, the disturbances of power

exchange at PCC become zero. Further, sensitivity analysis
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Fig. 1 Benchmark low-voltage microgrid network
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Fig. 2 Critical eigenvalues of the microgrid at initial state

shows that less stable eigenvalues are dominated by the power-

electronic-interfaced DERs and loads including their controller

parameters [8]. Thus eigen-analysis is focused on disturbances

from these units.

A. Disturbances from DERs and Loads

The bounds for disturbances of PV irradiance and load

power are shown in Table I. To better demonstrate the

Geršgorin disk calculation, the initial values in Table I are

set either as the lower bound or as the upper one. However,

the Geršgorin approach is not limited to this boundary setting.

Fig. 3 shows the comparison of Geršgorin disk calcula-

tions with and without quasi-diagonalization. Without quasi-

diagonalization where AMG is used directly for calculation,

the calculated Geršgorin disk is too conservative to be useful

(see the largest green circle in Fig. 3); on the contrary, tight

978-1-5090-4168-8/16/$31.00 ©2016 IEEE 



Table I Disturbances of PV Irradiance and Load Power

Disturbance
No.

Object
Initial
Value

Disturbance
Bounds

1 Irradiance of PV1 (W/m2) 1000.00 [970.00, 1000.00]

2 Irradiance of PV2 (W/m2) 1000.00 [1000.00, 1050.00]

3 Irradiance of PV3 (W/m2) 1000.00 [960.00, 1000.00]

4 Load1
Active Power (W) 12.75 [12.75, 14.00]

Reactive Power (VAR) 7.90 [7.50, 7.90]

5 Load3
Active Power (W) 61.15 [61.15, 65.00]

Reactive Power (VAR) 37.90 [36.00, 37.90]

6 Load4
Active Power (W) 12.75 [12.00, 12.75]

Reactive Power (VAR) 7.90 [7.90, 8.50]

regions are obtained with quasi-diagonalization (see the red

circles). This verifies the necessity and effectiveness of the

quasi-diagonalization devised in Section III.
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Fig. 3 Comparison of Geršgorin disks due to disturbance No. 1

Different Geršgorin disks of the critical eigenvalues under

disturbances are shown in Fig. 4, which offers the following

insights:

• Geršgorin theory provides a useful tool to analyze the im-

pact levels of different disturbances. For instance, in this

test, eigenvalue disks corresponding to the disturbance

No. 4 are larger than the others, meaning this disturbance

has a greater impact on the microgrid stability.

• Geršgorin theory can be combined with other methods

to get a more accurate location for each eigenvalue [8].

For example, Fig. 4 shows that disks of seven eigenvalues

−8.4140+j0, −9.6505+j0, −9.6926+j0, −9.7305+j0,

−9.7540 + j0, −9.7540 + j0, and −9.8989 + j0 are

overlapped with each other. In this case, perturbation

theory can then be utilized to focus on these eigenvalues

calculation, instead of computing the entire system again

when disturbances occur. As a demonstration, Table II

gives the perturbation calculation results of these eigen-

values under the disturbances No. 1, No. 2, and No. 4. It

verifies all eigenvalues are within their Geršgorin disks

in Fig. 4.

B. Disturbances from Controller Parameters

We use Geršgorin theory to investigate the impact of droop

coefficients on microgrid stability, because less stable modes in
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Fig. 4 Geršgorin disks due to disturbances shown in Table I

Table II Eigenvalues Calculation by Perturbation Theory

Initial Value Disturbance No. 1 Disturbance No. 2 Disturbance No. 4
−8.4140 + j0 −8.4133 + j0 −8.4141 + j0 −8.4204 + j0
−9.6505 + j0 −9.6506 + j0 −9.6499 + j0 −9.6124 + j0
−9.6926 + j0 −9.6869 + j0 −9.6867 + j0 −9.6421 + j0
−9.7305 + j0 −9.7307 + j0 −9.7303 + j0 −9.7446 + j0
−9.7540 + j0 −9.7643 + j0 −9.7605 + j0 −9.7416 + j0
−9.7540 + j0 −9.7643 + j0 −9.7605 + j0 −9.7416 + j0
−9.8989 + j0 −9.8952 + j0 −9.8960 + j0 −9.9057 + j0

systems are influenced primarily by the droop coefficients. The

uncertainty bounds of these coefficients are shown in Table III.

Fig. 5 shows Geršgorin disk comparison between parameter

disturbances and DERs (Loads) disturbances, providing the

following insights:

• Droop coefficients have stronger impact on eigenvalues

than disturbances in DERs and loads. It can be seen that

Geršgorin disks due to DERs (Loads) disturbances are all

covered by those due to parameter disturbances.

• Eigenvalues which are more sensitive to a specific param-

eter disturbance can be easily selected through Geršgorin

disks analysis. For instance, the disk of the eigenvalue

−23.0368 + j9.2424 is larger than that of −18.3862 +
j5.2594, implying the former eigenvalue is more sensitive

to this disturbance than the latter.

• Geršgorin disks due to parameter disturbances are more

closely coupled with each other than those due to DERs

(Loads) disturbances. For instance, the disks of eigenval-

ues whose real parts are within [−18.3862,−4.9148] are

overlapped with each other.

• Geršgorin theory also offers a tool to investigate the re-

lationship between droop coefficients and critical modes,

and such quantitative information can be further used to

tune droop coefficients to better stabilize microgrid.

V. CONCLUSIONS

Uncertainties are widespread in microgrids. This prob-

lem becomes particularly challenging when heterogeneous

unknown-but-bounded uncertainties exist in a microgrid. To

tackle the challenge, an enhanced Geršgorin theory is pre-

sented for eigen-analysis of mcirogrids subject to uncertainties.

With quasi-diagonalization, this method calculates Geršgorin
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Table III Disturbances of Droop Coefficients

Unit Parameter Initial Value Disturbance Bounds

Battery1
kf 9.4001 [9.4001, 9.6030]
kv 10.3644 [10.2541, 10.3644]

Battery2
kf 3.7136 [3.5145, 3.7136]
kv 8.0110 [8.0110, 8.5105]

Battery3
kf 6.0346 [6.0346, 6.3480]
kv 4.9836 [4.7789, 4.9836]

FC1
kf 0.4661 [0.4661, 0.5657]
kv 1.3947 [1.3947, 1.7537]

FC2
kf 0.4061 [0.4311, 0.4061]
kv 6.1507 [6.0593, 6.1507]
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Fig. 5 Comparison of Geršgorin disks between parameter distur-
bances and DERs (Loads) disturbances

disks which give the distribution of microgrid eigenvalues

under multiple disturbances. This robust stability analysis

method is both mathematically rigorous and computationally

efficient, offering a powerful tool for uncertainties analysis for

microgrids. The Geršgorin based approach has been tested and

verified via a typical microgrid with DERs.

APPENDIX

A. Sub-matrices Expression
MGi = Fx,Gi − Fy,GiG

−1
y Gx,Gi − Fy,GiG

−1
y Gx,C − Fy,CG

−1
y Gx,Gi

MLj
= Fx,Lj

− Fy,Lj
G−1

y Gx,Lj
− Fy,Lj

G−1
y Gx,C − Fy,CG

−1
y Gx,Li

MPk
= Fx,Pk

− Fy,Pk
G−1

y Gx,Pk
− Fy,Pk

G−1
y Gx,C − Fy,CG

−1
y Gx,Pk

ME = Fx,E − Fy,EG
−1
y Gx,E − Fy,EG

−1
y Gx,C − Fy,CG

−1
y Gx,E

MGi,Lj
= −Fy,Gi

G−1
y Gx,Lj

− Fy,Lj
G−1

y Gx,Gi

MGi,Pk
= −Fy,Gi

G−1
y Gx,Pk

− Fy,Pk
G−1

y Gx,Gi

MGi,E = −Fy,GiG
−1
y Gx,E − Fy,EG

−1
y Gx,Gi

MLj ,Pk
= −Fy,LjG

−1
y Gx,Pk

− Fy,Pk
G−1

y Gx,Lj

MLj ,E = −Fy,LjG
−1
y Gx,E − Fy,EG

−1
y Gx,Lj

MPk,E = −Fy,Pk
G−1

y Gx,E − Fy,EG
−1
y Gx,Pk

B. Parameters for Inverter Controller

The controller of inverters adopted in this paper can be

found in [7]. Controller parameters are given in Table IV.
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Table IV Parameters for Inverter Controllers in the Microgrid

DERs (Loads) Parameters

Battery 1

Outer
Loop

Tf KP TP KQ TQ

0.01 0.40 0.02 0.40 0.02
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.10 0.02 0.10 0.02

Battery 2

Outer
Loop

Tf KP TP KQ TQ

0.01 0.45 0.02 0.45 0.02
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.12 0.02 0.12 0.02

Battery 3

Outer
Loop

Tf KP TP KQ TQ

0.01 0.50 0.02 0.50 0.02
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.13 0.02 0.13 0.02

PV 1

Outer
Loop

Tf KP TP KQ TQ

0.01 2.00 0.80 1.00 0.80
Inner
Loop

Tm Kd Td Kq Tq

0.01 0.10 0.05 0.10 0.05

PV 2

Outer
Loop

Tf KP TP KQ TQ

0.01 1.50 0.80 1.00 0.80
Inner
Loop

Tm Kd Td Kq Tq

0.01 0.10 0.06 0.10 0.06

PV 3

Outer
Loop

Tf KP TP KQ TQ

0.01 2.00 0.80 1.00 0.80
Inner
Loop

Tm Kd Td Kq Tq

0.01 0.12 0.05 0.12 0.05

FC 1

Outer
Loop

Tf KP TP KQ TQ

0.01 0.80 0.01 0.80 0.01
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.10 0.02 0.10 0.02

FC 2

Outer
Loop

Tf KP TP KQ TQ

0.01 0.30 0.02 0.30 0.02
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.10 0.02 0.10 0.02

Load 1

Outer
Loop

Tf KP TP KQ TQ

0.01 0.20 0.05 0.20 0.05
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.80 0.02 0.05 0.05

Load 3

Outer
Loop

Tf KP TP KQ TQ

0.01 0.10 0.005 0.20 0.05
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.20 0.10 0.10 0.05

Load 4

Outer
Loop

Tf KP TP KQ TQ

0.01 0.40 0.05 0.20 0.01
Inner
Loop

Tm Kd Td Kq Tq

0.008 0.80 0.02 0.05 0.05
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