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H I G H L I G H T S

• A scalable distributed formal analysis (DFA) is devised for stability analysis of networked microgrids under disturbances.

• A distributed quasi-diagonalized Geršgorin (DQG) theory is developed to identify systems’ stability margins.

• A microgrid-oriented decomposition approach is established to decouple networked microgrids.

• A novel framework is designed to effectively implement DQG-based DFA in networked microgrids.
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A B S T R A C T

A scalable distributed formal analysis (DFA) via reachable set computation is presented to efficiently evaluate
the stability of networked microgrids under disturbances induced by distributed energy resources (DERs). With
mathematical rigor, DFA can efficiently compute the boundaries of all possible dynamics in a distributed way,
which are unattainable via traditional time-domain simulations or direct methods. A distributed quasi-diag-
onalized Geršgorin (DQG) theory is then combined with DFA to identify systems’ stability margins. A microgrid-
oriented decomposition approach is established to decouple a networked microgrid system and enable calcu-
lations of DFA and DQG while also preserving the privacy of each subsystem. Numerical tests on a networked
microgrid system validate that DFA and DQG facilitate the efficient calculation and analysis of networked mi-
crogrids’ stability.

1. Introduction

Networked microgrids are a cluster of microgrids interconnected in
close electrical or spatial proximity with coordinated energy manage-
ment [1–3] and interactive supports between each other [4–6]. They
have demonstrated flexibility in accommodating distributed energy
resources (DERs) [7,8] and resiliency benefits to electricity customers
[9,10]. However, the low inertia nature of DERs’ power-electronics
interfaces makes networked microgrids highly sensitive to disturbances
or even leads to stability issues [11,12]. These disturbances could be
intermittent generations from photovoltaics (PV) or wind [13], and
episodic loads produced by the plugin of hybrid electric vehicles [14].
The challenge here is that it can be prohibitively expensive to directly
evaluate these disturbances’ impacts DERs or loads can have on the
dynamics of a large-scale network microgrid system.

One intractable problem is the difficulty of using existing methods
to tackle the stability issues arising from the near-infinite number of
scenarios caused by DER integration [15]. There exist two major ca-
tegories of stability assessment methods: time domain [16,17] or

frequency domain simulation approaches [18] and direct methods [19].
The former approaches can compute operation trajectories based on a
specified system structure and initial condition, but they have limited
capability in handling parametric or input uncertainties [20]. Direct
methods are able to identify regions of attraction, but they need to
construct appropriate Lyapunov functions [19,21] or contraction
functions [22], which is difficult or even impossible in reality.

Moreover, centralized stability calculation and evaluation may be
impractical for dealing with a large-scale networked microgrid system
due to calculation burden or privacy issue [23,24]. Many system de-
composition techniques offer potential ways to tackle this problem. A
hierarchical spectral clustering methodology was adopted in [25] to
reveal the internal connectivity structure of a power transmission
system, in order to properly partition a large-scale system. However,
the eigenvalues and eigenvectors of a matrix correlated to the network
are needed to calculate, which significantly increases computational
burden and highly limits the application of this method. A multi-area
Thévenin equivalent circuit approach was used in [26], which more
focuses on optimally dividing the computation among PC cluster
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processors. A waveform relaxation method was used in [27] for tran-
sient stability simulations, where subsystems’ information are still
shared between them. Therefore, how to effectively decouple a large-
scale networked system and evaluate its stability is still an open pro-
blem.

In order to overcome the limitations of existing technologies, a
scalable distributed formal analysis (DFA) approach and a distributed
quasi-diagonalized Geršgorin (DQG) theory are presented to efficiently
investigate the stability of networked microgrids under disturbances.
The novelties of DFA and DQG are threefold:

(1) DFA can efficiently obtain the possible operation ranges of a net-
worked microgrid system under disturbances, rather than re-
peatedly simulating and analyzing the system with on-going dis-
turbances.

(2) DFA and DQG are fully distributed approaches with only limited
amount of information exchanged between neighboring systems.
Therefore, not only can they make a full use of distributed com-
puting resources, but also potentially prevent the privacy leakage
problem.

(3) DQG-enabled DFA is able to estimate the stability margin of a
networked microgrid system under uncertain conditions.

The remainder of this paper is organized as follows: Section 2 and
Section 3 establish the methodological foundations of DFA and DQG,
respectively. Section 4 describes partitioning a large-scale networked
microgrid system via microgrid-oriented decomposition method, and
disturbances modeling via zonotope technique. Section 5 discusses the
implementation of DFA and DQG. The feasibility and effectiveness of
DFA and DQG have been validated through tests on a typical networked
microgrid in Section 6. Conclusions are drawn in Section 7.

2. Distributed formal analysis via reachable set

DFA aims at finding the bounds of all possible system trajectories
under various disturbances. Mathematically, the aim is to find reach-
able sets which can cover all possible dynamics [28,29].

2.1. Distributed formal analysis

Assuming that a large-scale system can be partitioned into several
subsystems of lower dimensions, the reachable sets of the overall in-
terconnected system can be obtained based on the formal analysis re-
sults from each subsystem as shown in (1) and (2) [30,31].
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where +t( )s
e

k 1R is the reachable set of the overall system at each time
step, τ( )s

e
kR is the reachable set of the overall system during time steps,

n is the number of subsystems, which is discussed in Section 4, × is
Cartesian product [32], +t( )i

e
k 1R is the reachable set of the ith sub-

system at each time step, τ( )i
e

kR is the reachable set of the ith subsystem
between time steps, and φi is a matrix, which contain ones when states
are correlated and zeros otherwise an thus projects the local states of
the ith subsystem to the states of the overall system.

2.2. Formal analysis in each subsystem

The reachable sets, +t( )i
e

k 1R and τ( )i
e

kR , in the ith subsystem can be
calculated through the following two steps.

2.2.1. Dynamics abstraction of subsystems
If the ith dynamic subsystem can be expressed by a set of nonlinear

differential-algebraic equations (DAEs) [33], the dynamics of this sub-
system can be analyzed by abstracting the original DAEs into linear

differential inclusions at each time step, which is discussed in detail in
Section 4. Then the reachability model of the ith subsystem under un-
certainties can be expressed as follows:

∈ ⊕x A x PΔ ̇ Δ ,i i i i (3)

where = −x x x xΔ ,i i i 0 i 0, , is the operation point where the subsystem is
linearized, = ∈ ×aA [ ]jk

m m
i is the state matrix, m is the dimension of

the ith subsystem, ⊕ is Minkowski addition [28], and Pi is a set of
uncertain inputs which can be either formulated using a point-based
approach or a set-based one as is adopted in this paper and discussed in
Section 4 [28].

2.2.2. Reachable set computation in each subsystem
The reachable set of the ith subsystem can be obtained at each si-

mulation time step via a closed-form solution as follows [28,30,34]:
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where = −+r t tk k1 is the time interval, C (·) represents convex hull cal-
culation, and ϕ rA( , )i represents how the history reachable set t( )i

e
kR in

the ith subsystem contributes to the current reachable set +t( )i
e

k 1R , with
its expression given as follows:
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Iξ
e denotes the increment in reachable set caused by curvature of tra-
jectories from tk to +tk 1.
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3. Distributed quasi-diagonalized Geršgorin theory

Geršgorin Theorem is a powerful method for efficiently estimating
eigenvalues of a dynamical system under disturbances. An enhanced
distributed quasi-diagonalized Geršgorin theory is established in this
section and used to evaluate the stability margin in Section 5.

3.1. Geršgorin sets estimation

Assuming that Ai is the state matrix of the ith dynamic subsystem,
one can describe the eigenvalue problem which reflects the small signal
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stability of the subsystem as follows [12]:

= λA v v ,ji j j (13)

= λA u u .T
ji j j (14)

where λj is the jth generalized eigenvalue of the ith subsystem, vj and
uT

j are the jth right and left eigenvector, respectively, satisfying the
orthogonal normalization conditions as shown in (15) [33].

= δu v ,T
jkj k (15)

= δ λu A v ,T
jk jj i k (16)

where δjk is the Kronecker sign.
Instead of calculating the exact eigenvalues λj, the eigenvalue range

can be estimated directly based on the state matrix Ai by using the
Geršgorin disk and set obtained via the following Geršgorin Theorem.

Theorem 1. For any non-singular finite-dimensional matrix Ai with λj as its
jth eigenvalue, there is a positive integer k in L=1,2,…,l such that,

− ⩽λ a r A| | ( ),j kk k i (17)

where ≐∑ ∈ ⧹r aA( ) | |k s L k ksi { } . If σ A( )i denotes a set of all eigenvalues of Ai,
then σ A( )i satisfies the following condition:

⊆ ≐ ∪ =σ A A A( ) Γ( ) Γ ( ),k
l

ki i i1 (18)

where AΓ( )i is the Geršgorin set of non-singular matrix A A, Γ ( )ki i is the kth
Geršgorin disk, and can be expressed as ≐ − ⩽ ∈x a r xA AΓ ( ) {| | ( ), }k kk ki i .

3.2. Distributed quasi-diagonalized Geršgorin sets estimation

From (17), it can be seen that the eigenvalue distributions are
usually over-approximated when the state matrix Ai is not strongly
diagonally dominant. Therefore, diagonalizing the state matrix is cri-
tical to reduce the conservativeness of the conventional Geršgorin
theory and to improve the estimation accuracy of eigenvalue distribu-
tions. Taking into account the orthogonal normalization conditions
shown in (16), the state matrix Ai under system disturbances can be
quasi-diagonalized as follows:

= + = +U A V U A V U A V S S ,T T T
i 0 i i 0 i 0 i 0 i 0 i 0 i P i 0 i 0 i P, , , , , , , , , , (19)

where Ai 0, is the state matrix of the ith subsystem at the operation point
xi 0, , Si 0, , UT

i 0, and Vi 0, are the corresponding eigenvalue matrix, left ei-
genvector matrix, and right eigenvector matrix at xi 0, , respectively, Ai P,
is the increment of state matrix under disturbances, which is con-
structed via a set-based technique and analyzed in Section 4, and Si P, is
the corresponding increment of eigenvalue matrix. Thus, the eigenvalue
problem of a system under disturbances is transformed to the analysis
of the matrix Si P, . According to Theorem 1, the following expressions
can be obtained in each subsystem.

= − ⩽ ∈x s r xS SΓ ( ) {| | ( ), },k kk kSi P Si P, , (20)

⊆ ≐ ∪ =σ S S S( ) Γ( ) Γ ( ).k k
n

ki P i P i P, , 1 , (21)

Therefore, the distribution of the kth eigenvalue in the ith sub-
system under uncertainties can be expressed as a Geršgorin disk with
Si 0, as its center and SΓ ( )k i P, as its corresponding area.

3.3. Quasi-diagonalized Geršgorin sets estimation in the overall system

After Geršgorin sets correlated to each subsystem are calculated, the
following equations are used to obtain the Geršgorin results in the
overall system.

= × × ⋯×φ φ φS S S SΓ( ) Γ( ) Γ( ) Γ( ),nP 1 P 2 P n P1 , 2 , , (22)

= × × ⋯×σ φ σ φ σ φ σS S S S( ) ( ) ( ) ( ),nP 1 P 2 P n P1 , 2 , , (23)

where SΓ( )P and σ S( )P are the Geršgorin disk and sets of the overall
system, SΓ( )i P, and σ S( )i P, are the Geršgorin disk and sets of the ith
subsystem, × is Cartesian product and φi is the mapping matrix which is
the same with that in (1) and (2).

4. DFA and DQG in networked microgrids

A microgrid-oriented decomposition approach is presented in this
section, based on which DFA and DQG are implemented. Meanwhile, a
zonotope technique is introduced to model set-based disturbances in-
stead of using a point-based one [34].

4.1. Microgrid-oriented decomposition

When power-electronic interfaces of DERs are modeled using dy-
namic averaging method [33], a set of DAEs shown in (24) and (25) is
usually adopted to model a networked microgrid integrated with DERs.

=x F x y ṗ ( , , ), (24)

=0 G x y p( , , ), (25)

where ∈x x is the state variable vector (e.g., integral variable in DER
controllers), ∈y y is the algebraic variable vector (e.g., bus voltage),
and ∈p p is the disturbance vector. Obviously, microgrids are coupled
together via the algebraic equations in (25) as shown in Fig. 1(a).
Therefore, the key point of partitioning a large-scale networked mi-
crogrid is to decouple the algebraic equations. Taking into account the
feasibility of partitioning and calculation burden, a microgrid-oriented
decomposition is adopted here as shown in Fig. 1(b). By introducing an
interface vector Si j, , the original networked system can be decoupled
into several individual subsystems. The algebraic equation set in (25)
are then separated into multiple sets correspondingly, as given in (26).

∘ + − − =Y V V S S S 0· ,i i i G i L i i j, , , (26)

where ∘ is the Hadamard product [35], Yi is the modified admittance
matrix of the ith subsystem under system partition [28], Vi is the cor-
responding bus voltage vector [28], Vi is the extended bus voltage
vector V V[ , ]i i , SG i, is the power injection vector, SL i, is the power load
vector, Si j, is the exchange power on the interface of the ith subsystem
with its neighbors.

The advantages of the microgrid-oriented decomposition technique
include:

• The matrices of admittance, voltage, and power are formulated in
modules, which enables ‘plug and play’ and flexible decompositions.

• Only interface data are exchanged between neighbors, which helps
ensure data security [36]. In the future, a privacy-preserving tech-
nique [37] will be used to ensure the integrity and confidentiality of
the interface data, and to protect against attacks.

Based on the aforementioned system decomposition, the ith sub-
system can be linearized at the operation point xi 0, . When the high-
order Taylor expansion is neglected, the following equations can be
obtained [28].
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ṗ ( , , ) Δ Δ Δi i i 0 i 0 i 0
i

i
i

i

i
i

i

i
i, , , (27)

= +
∂
∂

+
∂
∂

+
∂
∂

0 g x y p
g
x

x
g
y

y
g
p

p( , , ) Δ Δ Δ ,i i 0 i 0 i 0
i

i
i

i

i
i

i

i
i, , , (28)

where ∈f Fi represents the differential equations correlated to the ith
subsystem, ∈g Gi represents the corresponding algebraic ones, i.e.,
(26), = ∂ ∂f f x/x i ii is the partial derivative matrix of differential equa-
tions with respect to state variables, = ∂ ∂f f y/y i ii is the partial derivative
matrix of differential equations with respect to algebraic variables,

= ∂ ∂f f p/p i ii is the partial derivative matrix of differential equations
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with respect to disturbance variables, = ∂ ∂g g x/x i ii
is the partial deri-

vative matrix of algebraic equations with respect to state variables,
= ∂ ∂g g y/y i ii

is the partial derivative matrix of algebraic equations with
respect to algebraic variables, and = ∂ ∂g g p/p i ii

is the partial derivative
matrix of algebraic equations with respect to disturbance variables.
When gyi

is non-singular [38], the following equation can be obtained.

= − + −− −x f f g g x f f g g pΔ ̇ [ ]Δ [ ]Δ .i x y y x i p y y p i
1 1

i i i i i i i i (29)

Therefore, with linearization, the state matrix of the ith subsystem
can be obtained at each time step.

= − −A f f g g ,i x y y x
1

i i i i (30)

where Ai is equivalent to Ai in (3), (13), and (14), − −F F G G p[ ]Δp y y p
1 is

equivalent to Pi in (3).

4.2. Zonotope-based disturbances modeling

A proper model of disturbances is critical to formal analysis. Instead
of using the traditional point-based methods, zonotope technique is
adopted in this paper due to its high accuracy, good compactness of the
representation, and low complexity [34,39].

A typical zonotope construction is shown in Fig. 2, based on which a
zonotope P is usually modeled in (31).

∑= ⎧
⎨⎩

+ ∈ − ⎫
⎬⎭=

c gβ β| [ 1, 1] ,
i

m

i i i
1

P
(31)

where ∈c n is the center of zonotope P and ∈gi
n are its corre-

sponding generators.
Therefore, by using (31), the uncertain input Pi in (3) can be ex-

pressed in a zonotope. For more accurate characterization of un-
certainties, polynomial zonotopes and probabilistic zonotopes can be
used.

5. Implementation of DQG-based DFA in networked microgrids

The DFA method integrated with DQG offers an option to effectively
calculate and analyze the stability of a networked microgrid system
under disturbances. The analysis procedure is illustrated in Fig. 3.

As shown in Fig. 3, an original interconnected microgrid system is

Fig. 1. Concept of microgrid-oriented partition.

Fig. 2. Concept of zonotope.
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partitioned into several subsystems based on the microgrid-oriented
decomposition concept shown in Fig. 1. Then the dynamics, steady-
state, and uncertainties involved in each subsystem are modeled using
(24), (26), and (31), respectively. The steady-state, i.e., power flow, in
each subsystem is then calculated in parallel based on data exchange
between subsystems. An example is given in Section 6 to illustrate the
iteration process of power flow computation. After power flows are
solved in a distributed way, linearization can be conducted via (27) and
(28) in each subsystems, based on which state matrix Ai can be ob-
tained.

Then the DQG-based DFA can be implemented, which involves the
following steps:

(1) DFA is used to computed the reachable sets of subsystems’ states
based on interface data exchanged between subsystems.

(2) DQG is sequentially used on the edges of reachable sets to calculate
Geršgorin disks.

(3) Geršgorin disks are then evaluated to assess the stability condition
of the overall system under disturbances.

5.1. Implementation of DFA

Reachable sets in each subsystem are calculated in parallel by using
(4) and (5). More details about this calculation can be found in [28]. If
the reachable sets of the subsystem interfaces converge, the overall
reachable set can be obtained based on (1) and (2). Otherwise, the
power flow will be updated and reachable sets in each subsystem will
be computed in parallel again.

5.2. Implementation of DQG

When the reachable sets are obtained, DQG can be used to effi-
ciently evaluate the stability of a networked microgrid system.
Specifically, (20) and (21) will be used to estimate the eigenvalue
distribution at the edge of the reachable set in each subsystem. After
obtaining Geršgorin disks in the ith subsystem, the real part of the
approximated eigenvalue located rightmost, αi max

e
, , can be expressed as

follows:

= +α max s r S( ( )),i max
e

kk k i P, , (32)

where max (·) means the maximum value, skk and r S( )k i P, can be found
in (20). αi max

e
, is then used to evaluate the stability of the ith subsystem.

5.3. Stability margin evaluation

Based on the aforementioned reachable set calculation and
Geršgorin disks computation, stability margin of an interconnected
system under disturbances can be explored as follows:

• If the stability criterion given in (33) is satisfied, it implies the ith
subsystem is stable; otherwise, it may not be stable. If this stability
criterion holds true in all subsystems, the overall system is stable;
otherwise, it might not be stable.

⩽α αi max
e
, 0 (33)

where α0 is the given threshold.

• If DQG shows the ith subsystem may not be stable, exact eigenvalues
will be calculated to further assess its stability. Specifically, the real
part of the maximum eigenvalue, i.e., αi max, , will be calculated. If the
stability criterion given in (34) is satisfied, the ith subsystem is
stable; otherwise it is not stable.

⩽α αi max, 0 (34)

• If DQG shows the overall system is stable, disturbances will be en-
larged in order to get the stability margin. After setting new dis-
turbances, reachable sets and Geršgorin disks will be calculated
correspondingly to evaluate the stability again.

The evaluation process will be terminated when the simulation time
ends or the system is always unstable after a given simulation steps. If
one of these criteria is satisfied, then stop; otherwise continue power
flow calculation and reachable set computation. After stability margin
is obtained, predictive control or dispatch [40] can be performed in
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advance to improve systems’ performance. Then an interconnected
microgrid system can serve as a resiliency source to better stabilize,
restore, or support the main grid.

6. Test and validation

A typical networked microgrid system shown in Fig. 4 is used to test
and validate the DQG-based DFA approach by analyzing the impact of
DERs on system stability. The circuit breaker is open to form a power
island, in order to better illustrate the DER impact. More details of the
test system can be found in [28]. The DFA and DQG algorithms are
developed on the basis of multiple functions in the CORA toolbox [41].
The simulation step size is set to 0.010 s.

6.1. Verification of microgrid-oriented decomposition

In this test, the original networked microgrids shown in Fig. 4 is
partitioned into two subsystems to validate the concept of microgrid-
oriented decomposition. Table 1 summarizes the elements of each
subsystem.

Based on the aforementioned system partitioning, power flow is
calculated in subsystem 1 and subsystem 2 in parallel, which is the
inner iteration. Specifically, the corresponding S1 2, (Si j, given in (26)) in
subsystem 1 is the power output from node 6 to node 10; S2 1, in sub-
system 2 is the power output from node 10 to node 6. The Newton

iteration method is adopted to solve power flow in each subsystem
[42]. Subsequentially, an outer iteration is conducted to exchange and
update data on the interface of subsystems. The stopping criteria of
inner Newton iterations in subsystem 1 and subsystem 2 are set as

−e1.0 5, whereas that of Newton iterations on their interface, i.e., the
outer iteration, is set as −e1.0 3. In order to better illustrate the changes
of values during iterations, the following conversion based on l2-norm is
adopted [43]:

= −c ln r‖ ‖ 10/ (‖ ‖ ),i i2 2 (35)

where r‖ ‖i 2 is the l2-norm of the real value during iterations, c‖ ‖i 2 is the
corresponding converted value.

Fig. 5(a) shows the voltage comparisons between the presented
microgrid-oriented decomposition method and the traditional cen-
tralized solution, and Fig. 5(b) demonstrates the l2-norm changes of
variables on the interface in the outer iterations. Fig. 6(a) and (b) il-
lustrates the changes of variables during inner iterations in subsystem 1
and subsystem 2, respectively. From Figs. 5 and 6, it can be seen that:

• Comparisons shown in Fig. 5(a) have verified the feasibility and
effectiveness of microgrid-oriented decomposition in networked
microgrids.

• The outer iteration process is monotonically decreasing until it is
converged, which means the microgrid-oriented decomposition is
effective in decoupling and analyzing networked microgrids. Based
on the aforementioned stopping criteria of Newton iterations, five
outer iterations are needs to obtain the final power flow results. This
iteration number depends on the system size and stopping criteria.

• The inner iteration process in each subsystem shows a zigzag de-
crease. The reason is that calculations in each subsystem are carried
out based on the interface data at the previous iteration step, e.g.,
S1 2, in subsystem 1 and S2 1, in subsystem 2. Even subsystems are
converged at the previous iteration, the increments involved in the
Newton iteration may become large again after subsystems ex-
change data between each other.

• Inner iterations in subsystems may be different from each other. For
instance, three inner iterations are involved in subsystem 1 within
the second outer iteration; whereas only two inner iterations are
involved in subsystem 2.

6.2. DFA computation and verification

6.2.1. Reachable set calculation
In this test, multiple active power fluctuations of the PV in

Microgrid 5 are investigated to evaluate their impacts on system per-
formance. Specifically, disturbances of ± ± ±1%, 5%, 10% and ± 15%
are introduced around the PV’s baseline power output. Fig. 7 shows the
three dimensional reachable sets between the control signals of active
power, Xpi, and that of reactive power, Xqi. Figs. 8 and 9 show the
corresponding cross sectional views of the reachable set changes along
the time line. To better illustrate the changes of reachable sets, devia-
tion percentages of Xpi and Xqi around their zonotope centers are pro-
vided in Figs. 8 and 9, respectively. More details of Xpi and Xqi can be
found in [28]. From Figs. 7–9, it can be seen that:

• DFA is able to calculate the possible operation boundaries of a
networked microgrid system under different uncertainty levels. It
validates the presented microgrid-oriented decomposition can be
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Fig. 4. A typical networked microgrid system.

Table 1
Elements of each subsystem.

Subsystems Microgrids Branches

1 1, 3, 6 − − − − − − − −3 4, 4 5, 4 6, 6 7, 7 8, 8 9, 9 13, 6 20
2 2, 4, 5 − − − − − − − −10 11, 11 12, 11 14, 14 15, 15 16, 16 17, 16 18, 18 19

Y. Li et al. Applied Energy 228 (2018) 279–288

284



effectively used to solve reachable sets in parallel.

• The sizes of zonotopes increase as the uncertainty level increases.
The correctness of DFA result can be further verified by the com-
parison between DFA and the centralized calculation as shown in
[28].

• The comparison between (a) and (b) in Figs. 8 and 9 shows that the
disturbances in Microgrid 5 have more impact on the dynamics of
Microgrid 5 and Microgrid 4 than that on Microgrid 3 and Microgrid
6 in subsystem 1. The reason is that Microgrid 5 and Microgrid 4
both belong to subsystem 2 and are electrically closer to each other.
Detailed comparisons of deviation are given in Table 2.

6.2.2. DFA verification via time domain simulation
Simulations in time domain are used to validate the coverage ability

of DFA. For clear and better illustration, seventeen simulation trajec-
tories are selected to compare against the DFA results. Fig. 10 shows the
simulation results of Xpi and Xqi in subsystem 2. It can be observed that:

• The reachable sets are able to fully enclose the time domain tra-
jectories, which validates the over-approximation capability of DFA.

• The over-approximation of reachable sets in this test case is accep-
table; however, when the system size highly increases, techniques to
reduce the conservativeness may become necessary, e.g., set split-
ting [44], optimality-based bounds tightening [45].

The observations also show that DFA can obtain the same results as
from the centralized formal analysis [28].

6.3. Stability margin analysis via DQG-enabled DFA

In this test, the feasibility of DQG-enabled DFA is demonstrated via
calculating the stability margins at different time points. Fig. 11(a)
shows the stability margin of Microgrid 5 at 0.2 s; whereas
Fig. 11(b)–(d) illustrates the corresponding Geršgorin disks at different
operation points, respectively. It can be seen that:

(a) Voltage comparison (b) Voltage differences between iterations 
Fig. 5. Voltage results using microgrid-oriented decomposition.

(a) Voltage changes between iterations
in the subsystem 1

(b) Voltage changes between iterations
in the subsystem 2

Fig. 6. Voltage iterations in subsystem 1 and subsystem 2.
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Fig. 7. 3-D reachable set of subsystem 2.
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• The stability margin can be efficiently obtained, which validates the
feasibility of the DQG-enabled DFA.

• DQG is able to effectively assess the stability when the system op-
eration point is far away from its stability margin, e.g., the point A in
Fig. 11(a) and its results in (b). Therefore, in this case, exact ei-
genvalue calculation is no longer necessary.

• As the uncertainty increases, Geršgorin disks are approaching the y-
axis, e.g., the point B in Fig. 11(a) and its results in (c).

• When the system is approaching its stability margin, results from

DQG may be conservative (e.g., the point C in Fig. 11(a) and its
results in (d)), and thus, exact eigenvalue inspection becomes ne-
cessary.

7. Conclusions

Distributed formal analysis, DFA, is presented in this paper to effi-
ciently assess the stability of networked microgrids under hetero-
geneous disturbances. Distributed quasi-diagonalized Geršgorin, DQG,

Fig. 8. Reachable sets of subsystem 2 projected to the time line.

Fig. 9. Reachable sets of subsystem 1 projected to the time line.

Table 2
Deviation comparisons of Xpi and Xqi at 2.0 s.

Subsystems Microgrids Deviations Uncertainties

± 1% ± 5% ± 10% ± 15%

Subsystem 1 Microgrid 5 Xpi ± 1.53% ± 7.65% ± 15.44% ± 23.52%
Xqi ± 3.49% ± 17.28% ± 33.40% ± 47.56%

Microgrid 4 Xpi ± 0.35% ± 1.77% ± 3.57% ± 5.42%
Xqi ± 1.37% ± 6.94% ± 14.35% ± 22.78%

Subsystem 2 Microgrid 3 Xpi ± 0.04% ± 0.18% ± 0.35% ± 0.52%
Xqi ± 0.07% ± 0.36% ± 0.73% ± 1.12%

Microgrid 6 Xpi ± 0.03% ± 0.15% ± 0.30% ± 0.45%
Xqi ± 0.04% ± 0.19% ± 0.39% ± 0.60%
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is then established to estimate the stability margin of the networked
microgrids. A microgrid-oriented decomposition approach is also de-
veloped to decouple systems and enable reachable set calculations in
parallel. Numerical tests are performed on a typical networked micro-
grid system. Analyses and tests have confirmed the feasibility and ef-
fectiveness of DFA and DQG in the stability analysis of networked mi-
crogrids. In the future, DFA and DQG can be further evaluated on a real
time simulation test bed or even a real life networked microgrid system.
DFA and DQG can be integrated into Advanced Distribution

Management System (ADMS) to enable efficient stability assessment
and stability margin identification and to provide provably safe and
secure operation schemes for networked microgrids. The tools can also
be used for planning and designing networked microgrids with guar-
anteed stability and performance.
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