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Abstract

Enhanced Tree Trimming (ETT) is a vegetation management standard con-

sisting in the trimming or removal of trees in proximity of overhead lines. We

quantify the effects of this practice, designed to improve the resiliency of the

overhead electrical power grid, using two independent methodologies. The first

approach is a statistical study of the change of frequency of outage-free loca-

tions. The second approach uses an Outage Prediction Model (OPM) as a

vulnerability assessment tool to evaluate the change in the number of outages

before and after ETT. The OPM is a machine learning based framework that

relates weather, soil, vegetation and electric grid characteristics to storm-related

power outages. The two methods introduced in this work are compared against

a straightforward assessment of the ETT impact on the number of outages.

Applying both methods, the occurrence of power outages is studied for varying

tree trimming amounts, for 144 storms occurred between 2005 and 2017 in the

Northeastern United States. From the statistical approach we find a reduction

of the outage-free grid cells during storms between 49% and 65% due to tree

trimming. The OPM based analysis suggests that the number of outages during

storms are reduced between 16% and 48% after performing ETT.
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1. Introduction

Electric utilities apply tree trimming and other vegetation management stan-

dards along power transmission [1] and distribution [2], [3] lines to minimize

damages caused by trees during storms [4] and maintain system reliability [5].

Trees are among the top causes of outages in electric distribution systems [6]5

[7], and vegetation management is a key component for improving the electric

grid resilience to weather-related power outages [8].

In the absence of vegetation maintenance, trees can grow undisturbed and

eventually fall on power lines [9], while cyclic tree trimming helps preventing

trees and brush from interfering with the lines [10]. This cyclic vegetation man-10

agement technique, which Eversource Energy-Connecticut performs every four

to five years, is called Scheduled Maintenance Trimming (SMT), and consists

in the removal of limbs within 8 feet (2.5 meters) to the side, 10 feet (3 meters)

below, and 15 feet (4.5 meters) above the wires of the distribution lines [11].

Beyond SMT, Enhanced Tree Trimming (ETT) is also performed, and consists15

in the complete removal of trees and brush within 8 feet (2.5 meters) to the side

of power lines [11].

Beyond the utility’s perspective, tree trimming and removal in urban areas

have climatological and societal dimensions: urban forests change microclimate

conditions, by decreasing the temperature during hot summer days [12], [13],20

[14] and improving air quality [15] [16], [17], and also provide a more pleasant

and comfortable living environment [18], [19]. Matching utility benefits with

people’ expectations in urban areas is challenging, because trees and overhead

distribution lines share the same space [20]. Collaboration and coordination be-

tween utilities and municipalities is therefore needed to guarantee the reliability25

of the electric system consequently people’ well-being [20], especially where pub-

lic concerns about tree removal has been raised [21].Evaluation of the impact
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of ETT on power grid resilience may provide a vital piece of information for

understanding the effects of this management practice.

A first attempt to evaluate the impact of tree trimming on failure rates for30

overhead (OH) distribution feeders can be found in [5]. According to that study,

in a 8-year vegetation management cycle, there is a trend of increase of failure

rates between 3 and 7 years after tree trimming is performed. However, the

high variability around the mean makes the results of this study quantitatively

difficult to interpret. A reason for the lack of statistically significant results can35

be attributed to the absence of parameters describing the annual variability of

storms impacts.

In nonstorm conditions, the effects of tree trimming on power outages were

evaluated in [22], for an electric company in the Southeastern US. From the

study it emerged, with statistical significance, that electric power system relia-40

bility is improved by tree trimming. Under storm conditions, a quantification

of the reduction of the number of outages due to ETT has never been evalu-

ated. However, it was demonstrated that tree trimming and other vegetation

management techniques improve storm-related outage prediction [23].

This study aims at presenting methodologies for assessing of the ETT ef-45

fects on the resilience of the electric grid. Specifically, we evaluate the impact

of ETT on the rate of outages through two different approaches. The first is a

purely statistical analysis of outage data to evaluate the trend of outage reduc-

tion to increasing ETT. The second is a resiliency evaluation carried out using

an Outage Prediction Model (OPM) that predicts the power outages during50

storm events. The second approach allows to take into account the variabil-

ity in storm severity through the use of OPM, which provides a reference for

the evaluation. Results from the two evaluation frameworks will be compared

against a straightforward assessment, which quantifies the change of outages for

different tree trimming amounts without considering any other factor affecting55

power outage occurrence.

The next section provides a characterization of the dataset and a description

of the model setup. Section 3 describes the methodology used for assessing the
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impact of ETT on electric grid resilience. The results obtained by following the

two methods proposed in this paper are presented and discussed in section 4.60

Finally, a summary of the principal findings of the study, together with their

implications on future studies and the State economy is presented in section 5.

2. Model and Data

2.1. Variable description and Model Setup

This study is based on 100 extratropical storms exhibiting rain and wind65

conditions and 44 thunderstorms, occurred in the period 2005-2017 across Con-

necticut. The storms considered are an extension of the storm events dataset

used in [24], [25] and [26] for OPM evaluation. The storm outage model was

based on the combination of the two machine learning models that in [26] ex-

hibited the best performance for outage prediction purposes: Random Forest70

(RF, [27]) and Bayesian Additive Regression Trees (BART, [28]).

Two hundred decisions trees [29] consitute our RF. Each decision tree is

formed by a series of nodes and branches that split the dataset through decision

rules, by minimizing the sum of square error. Each tree uses a random subset

of predictor variables and is trained on a random subset of training data.75

The BART model is a sum of tree models, that can be expressed as [28]:

Y =

m∑
j=1

gj(x, Tj ,Mj) + ε. (1)

where m = 30 is the number of binary trees Tj with associated sets of param-

eters Mj ; x is the vector of predictors, ε is assumed to be normal, with standard

deviation σ. The contribution gj(x;Tj ,Mj) to the Bayesian sum provided by

each tree is computed through ten thousand Bayesian iterations of the Markov80

Chain Monte Carlo (MCMC [30]) algorithm, starting from prior specifications

for Tj , Mj and σ. Four thousand iterations are used after convergence is reached

to obtain the predictions. Number of iterations and trees are the same as [26],

and are constrained by computational power.
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The two models were trained on the storm datasets and used a number85

of input variables (described in Appendix A) including weather, land cover,

soil, vegetation, electric grid characteristics, and historical outages, similarly to

[23], [24], [25], [31], and [26]. Weather and soil parameters were obtained from

Weather Research and Forecasting (WRF v3.7) model [32], [33], operating in

hindcast mode. The WRF model was initialized with Global Forecasting System90

(GFS) weather analyses and the dynamical downscaling occured through the use

of three nested domains, at 18, 6 and 2 km grid spacing. Land cover variables

weare obtained from the National Land Cover Database (NLCD) at 30 meters

resolution, provided by the Multi-Resolution Land Characteristics Consortium

(MRLC, [34]). Vegetation characteristics were represented through a Leaf Area95

Index (LAI) dataset, produced in [26]. This dataset was obtained through post-

processing of a global LAI dataset [35] derived from MODIS [36] to compute,

for every 8-day period of the year and for every grid cell, a climatological value

of the LAI. Electric grid information, provided by Eversource Energy, included

OH lines and annual tree trimming data. Storm outage data were provided by100

the electric utility: each outage is defined as a location where a two-man crew

is needed to restore power, and the number of outages on a 2 km grid was the

object of the models predictions.

2.2. Aggregation Methods

Our analysis was performed on the 2 km inner WRF grid. Weather- and soil-105

related variables, obtained from WRF output are already at the 2 km grid, but

other datasets had to be interpolated to this grid. Land cover parameters, com-

puted in the immediate proximity (60 m) of the OH lines, were aggregated for

each 2 km grid cell [31]. A similar procedure was employed for the computation

of the OH trimmed and non-trimmed lines: the WRF grid was superimposed to110

the OH lines map, and the length of the lines in each grid cell was computed, to-

gether with the length of trimmed lines for each year (Figure 1). Consequently,

for each cell and for each year, we computed the percentage of lines treated

with ETT and the cumulative percentage of ETT from the beginning of the
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treatment.115

Figure 1: Map of overhead lines (orange) and ETTed lines (black) during 2015 in the State

of Connecticut (green), with WRF model grid overlaid (squares).

To account for vegetation density characteristics we post-processed the LAI

data by computing, for each grid cell and for each week of the year, the climato-

logical value of the LAI through the use of a gaussian filter and an autoregressive

model applied to the original, global dataset. All the outages measured during

or in the immediate hours after each storm were attributed to the grid cell in120

which they were reported.

For analyzing the dataset at the town level, each grid cell is assigned to the

town with the largest areal coverage in the grid cell. Each town is assigned to

a division on the basis of the geographic location (Eastern, Western, Southern,

Central) within the utility service territory in Connecticut.125

2.3. Dataset characteristics

The knowledge of the principal dataset features guided the development of

the methods at the basis of the analysis performed in this work. In the following
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paragraphs we are presenting the characteristics of ETT and outage data, their

mutual relationships, and the relationships with other variables of the dataset.130

Between 2005 and 2008 ETT was not systematically performed, while be-

tween 2009 and 2016, ETT was performed on 21% of the total OH lines length

in Connecticut, at a rate varying between 1.4% to 4.1% every year (Figure 2).

The decision as to where to trim each year is affected by considerations, such

as budgets and past reliability [37]. Between 2009 and 2017, 80% of the grid135

cells in the study area received some ETT in portions of the transmission or

distribution lines they contain.

Figure 2: Percentage of ETTed lines by town in the State of Connecticut between 2009 and

2016.

Cumulative tree trimming amount presents a low variability across the 4

divisions, varying between 18% and 23%, and across the towns, since no town

exceeds 50% of cumulative ETT (Figure 3a). Moreover, tree trimming is per-140

formed in both mostly forested and mostly developed areas (Figure 3a, 3b),

hence no significant impact on the results of the analysis is expected from re-

lating ETT to land cover variables.

The total number of outages for the considered extratropical storms and

thunderstorm events is 58,236. Outages are primarily concentrated in South-145

Western Connecticut (Figure 3d), due to the high population and assets density.
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The outage temporal distribution is uneven across the years (Figure 3c) and the

seasons. In particular, most of the dataset describes storms occurring when

leaves are on trees, since the interaction between solid or mixed precipitation

and the electric grid is not object of this study. Two major hurricanes (Irene,150

2011; Sandy, 2012) have been excluded from the study, because their outage

predictions require a different OPM, whose error characteristics are difficult to

quantify due to the limited dataset. The strongest storm considered in our

analysis, occurred on October 2017, produced 4430 outages.

Figure 3: a) Cumulative ETT percentage as of 2017; b) percentage of forested area; c) cumu-

lative and d) spatial distribution of outages between 2005 and 2017.

The outage distribution is zero- and one-inflated: on average 91% of the155

grid cells in each storm do not contain any outage, 7% contain 1 outage, while

less than 2% have a number of outages grater or equal than 2. For this reason,

the study of the frequency of zeros versus non-zeros is an appropriate metric to

describe the most important features of the dataset.
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It is important to note that in each grid cell the total number of outages160

depends on the length of the OH lines (Figure 4a). The probability of having

outages in a given cell is proportional to the line length in that cell. Moreover,

also the cumulative ETT percentage depends on the line length, and the de-

pendency of this quantity on the OH line length is shown for the year 2017 in

Figure 4b. All cells with total OH line length over 25 km are associated with165

ETT ranging between 5% and 55%, while all cells with ETT above 65% are

associated with OH line length below 15 km. The first can be explained by the

fact that if a grid cell has a high amount of OH lines it is more likely that a part

of the lines was selected for the ETT program, but it is also less likely that all

the vegetation next to the power lines was trimmed. On the contrary, it is more170

likely for a grid cell with a limited OH line amount to be completely trimmed.

Figure 4: a) density scatter plot between total outage and OH line length; b) and between

cumulative ETT fraction in 2017 and OH line length.

Based on the above, one can argue that this relationship between ETT,

outages, and line length can influence the results of this analysis. In the next

section, we describe a methodology that, by taking into account these depen-

dencies, introduces corrections to the raw results. This approach is necessary175

for the correct interpretation of the ETT impact on the reduction of outages

occurrence, and to avoid an overestimation of this impact.
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3. Methodology

As discussed above, two separate methodologies were used to evaluate the

role of ETT on the electric grid resilience:180

• a statistical method, describing the relationship between the change of the

number of outage-free grid cells and the amount of tree trimming.

• a model based analysis, which uses the OPM for establishing whether the

impact of tree trimming on the amount of storm related power outages can

be more accurately estimated by taking into account variations of storm185

frequency and intensity. .

Both approaches were applied separately on the two storm types of this

study: extratropical and summer thunderstorms. These methods are compared

to a straightforward statistical assessment (hereafter named baseline), which

measures the percentage of outage free grid cells for different tree trimming190

amounts.

3.1. Baseline assessment

The first step for the analysis of ETT impact on power outages occurrence

during storms was the selection of subsets of the original dataset with similar

vegetation management characteristics. We set seven thresholds equally spaced195

between 0 and 100% of cumulative ETT per grid cell to create eight equal

intervals. These intervals allowed us to partition the dataset, and to study

the confidence intervals [LI, UI] for the proportions between the presence and

absence of outages for each subset using the Wilson score interval with continuity

correction [38] [39]:200

LI = max

0,
2np̂+ z2 −

[
z
√
z2 − 1/n+ 4np̂(1− p̂) + (4p̂− 2) + 1

]
2(n+ z2)

 (2)

UI = min

1,
2np̂+ z2 +

[
z
√
z2 − 1/n+ 4np̂(1− p̂)− (4p̂− 2) + 1

]
2(n+ z2)

 (3)
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where z = 1.96 for the 95% confidence level chosen, and p̂ = nz/n is the

percentage of zeros, which is the ratio between the number of zeros nz and the

total number of entries n.

This baseline evaluation of the ETT change among the subsets, produces205

both deceiving and inaccurate results, by misrepresenting the impact of ETT,

due to the lack of normalization for OH line length and storm intensity. We will

use the baseline results as a starting point of our analysis, and we will compare

the results of the herein proposed methods with the findings of this baseline

evaluation.210

3.2. Statistical data analysis method

In order to provide a more accurate evaluation of the ETT impact on electric

grid resilience, we investigated some important factors affecting the occurrence

of power outages through a statistical approach.

The change of the percentage of zeros between the subsets is only partially215

explained by a different tree trimming amount. The principal reason for the

change of this percentage is given by the dependency between ETT and OH

lines, already introduced in Figure 4. The boxplots summarizing the principal

characteristics of the OH line length distribution computed for all the storms

across the subsets (Figure 5) show a strong decrease of OH line length per220

grid cell for increasing ETT, if tree trimming is performed. Since the expected

number of outages is proportional to the OH line length, the strong decrease

of OH line length for increasing ETT suggests, per se, a modification in the

expected number of outages. For this reason, it was necessary to perform the

following steps:225

1. To control our experiment we created new subsets for each tree-trimming

interval using the outage history of the grid cells. For each member of

the partition studied in the baseline assessment, the new subsets contain

the history of weather, outages and trimming for the grid cells of this

member. Since all the grid cells had a starting value, before 2009, of 0%230

ETT, the first subset, corresponding to [0%,12.5%] ETT, contained the
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Figure 5: Boxplots of OH line length for each subset based on ETT amount.

entire dataset, and was not considered in this part of the analysis. For

each other subset, the ETT histogram was composed of two peaks, that

can be identified as before and after ETT. For each peak, we computed

the confidence interval on p̂ using the Wilson score. Multiple sessions of235

ETT were identifiable as background signal in the histogram.

2. We computed the quantity F of outage-free grid cells per standard OH

line length:

F =
p̂ ∗m
l

(4)

where m = 9.4km is the mean OH line length for all the grid cells, and l is

the mean length for the considered subset. This normalization allowed us240

to take into account of the relationships between the number of outages

and the length of the OH lines.

3. We computed the coefficients a and b, and their respective standard errors,

both before and after ETT was performed. For this purpose, we used a

weighted linear least square regression model [40] for the dependency of F245

on the ETT intervals:
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F = a+ b · ETT + ε (5)

where a is the intercept, b is the slope and ε the vector of errors. Values

different than zero for the slope correspond to the presence of a trend

in the number of outage-free grid cells for varying tree trimming. The

intercept a can be associated to a typical value for the number of outage-250

free grid cells, therefore changes in a correspond to changes in reliability

between before and after tree trimming.

4. We performed a z test for the slope of the regression, following [41] and

[42]:

Z =
b1 − b2√

SE2
b1

+ SE2
b2

(6)

where b1 and b2 are the slopes of the regression models respectively before255

and after ETT, and SEb1 , SEb2 their standard errors. The test for the

slope allowed us to draw conclusions about the presence of possible trends

of outage reduction for increasing tree trimming.

The statistical approach described above is used to evaluate the impact of

ETT on the number of outage-free locations. However, since the number of260

power outages depends on storm intensity, the statistical analysis of the outage

dataset alone is not sufficient due to the variability of number and severity of

storms each year and the impact this variability has on the results. Therefore,

this analysis was extended using the OPM model, that allows to normalize the

outages based on the expected number for each storm. This method is discussed265

in the next section.

3.3. OPM Model Based Method

The trends and the associated uncertainties in the number of outages, and

their dependencies on storm intensity, OH line length, and ETT can be simulta-

neously considered by using the OPM. Specifically, the OPM ability to predict270
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the intensity of storm impacts based on weather, land cover, soil moisture, veg-

etation variables, and electric grid characteristics allows to take into account of

the storm severity variability by studying the relationships between predicted

and actual outages.

The evaluation process of ETT impact on outage reduction through the use275

of the OPM consists of the following stages:

1. For each subset of the partition introduced in subsection 3.2, we computed

the mean number of OPM predicted and actual outages per grid cell per

storm. Following [43], the 95% confidence intervals for the mean were

calculated as:280

CI = x̄± tα/2(s/
√
n) (7)

where x̄ is the mean, tα/2 is the critical value of the t-distribution, s is

the standard deviation of the data, and n the number of samples.

From the analysis of the trends of actual and predicted outages, it was

possible to understand the model behavior for the different storm types.

2. Following the procedure performed in subsection 3.2, we analyzed the285

family of subsets for an evaluation of the change of outages in locations

where ETT was performed. For each subset, the Outage Overestimation

Factor (OOF), was computed as the ratio between the predicted and the

actual outages per grid cell. This quantity is invariant for both storm

intensity and OH line length, and is close to 1 (unbiased) when computed290

on any sufficiently large dataset. However, ETT is not a variable used in

the OPM, hence the OOF provides information on the outage reduction

where ETT was performed.

Since the number of outages is much smaller than the number of entries in

the dataset, and since in only 2% of the locations the number of outages295

is greater than one, a good approximation for the confidence intervals for

the OOF is given by the confidence interval for the risk ratio. The lower

and upper boundaries can be computed, following [44], as:
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[LI, UI] = OOF · exp
(
±z
√

1

x1
− 1

n1
− 1

x2
− 1

n2

)
(8)

where x1 and x2 are the numbers of predicted and actual outages in each

subset, that can be approximated as the number of grid cells with outages,300

and n1 = n2 is the dimension of each subset.

Since the results obtained for the absence of ETT are statistically unbi-

ased, there is no need to proceed to further post-processing.

4. Results

Using the above-mentioned methodology, in this section we will quantify the305

impact of ETT on storm related outage frequency. We will compare results from

the statistical and modeling approaches, for both thunderstorms and extratrop-

ical storms, in order to explain similarities and differences between storm types

and approaches.

The first step of our analysis consisted in the assessment of the change of310

the number of outages per grid cell per storm and of the percentage of zeros

for increasing ETT. For this purpose, we selected the subsets of the partition

introduced in section 3.2, and we computed means and confidence intervals of

the quantities of interest. For both extratropical storms (Figure 6, left) and

thunderstorms (Figure 6, right), we determined, with statistical significance, a315

decrease of the number of actual outages per grid cell per storm (Figure 6, top),

and an increase of the percentage of outage-free grid cells in the dataset (Figure

6, bottom) for increasing ETT. These results allowed us to estimate a 10 fold

(87% to 91%) decrease of the number of power outages between the first and the

last subset. It is important to note here that the OPM was able to predict the320

decrease of the number of outages for increasing ETT (Figure 6, blue markers),

although this quantity was not used as model predictor. This finding suggests

that the predictability of the decrease of outage frequency for increasing ETT

can be mostly explained by the decrease of OH line length for increasing ETT

15



(Figure 5), and by the relationships between outages and OH line length (Figure325

4a,b).

Figure 6: Trend of predicted (red) and actual (blue) trouble spots versus the percentage of

tree trimming (top); percentage of data and percentage of zeros for varying tree trimming

(bottom), for extratropical storms (left), and thunderstorms (right).

The OPM predictions, however, present an ETT-dependent bias, which man-

ifests as an increasing overestimation of the average predicted outages with re-

spect to the average actual values. In order to extract information from the bias

change, we investigated the change of the OOF, already introduced in section330

3.3, between before and after ETT being performed. It is noted that, for all the

considered subsets, the value of the OOF was not significantly different than the

target value of one (unbiased) for the data corresponding to storms hitting areas

of the territory before ETT was performed. For the same locations, however,

the OOF was significantly different than one after trees were trimmed, for all335

the subsets, except for (75%,87.5%] ETT, as shown by the blue markers in Fig-

ure 7. These results allowed us to estimate that the impact of ETT on outage

occurrence could be quantified as a 16% to 48% reduction in outage frequency

(36%-63% for thunderstorms, 13%-52% for extratropical storms, not shown).
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We did not find, however, any statistically significant trend (not shown) of in-340

crease of OOF for increasing ETT, despite the group with the highest ETT

amount presenting the highest OOF value.

For the same subsets, we also studied the change of outage-free grid cells

before and after tree trimming. By contrasting the percentage of zeros within

each subplot of Figure 7, we found a significant increase of outage-free grid345

cells for all the groups after ETT was performed. Moreover, from a comparison

across the different subplots of Figure 7, we noticed that a strong increase was

also present across different groups.

Figure 7: Change of power outage frequency between before and after ETT is performed, for

varying ETT amounts. The blue squares represent the change in the OOF, the red circles

represent the change of the number of outage free grid cells. Both quantities are computed

before (left peak of each histogram), and after (right peak) ETT is performed. The background

noise of the histogram corresponds to multiple ETT in the same grid cell during the years.

Through the information brought about by the differences across the groups,

we quantified the average ETT impact, and the dependency of this impact on350

the amount of ETT. To achieve this, we computed the quantity F (equation 3),

which allowed us to normalize the percentage of zeros across the ETT groups,
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and to evaluate whether the differences within the groups varied across the

groups. It is important to note that the larger widths of the confidence intervals

associated with high ETT values is due to the smaller sample size of these classes355

(green histograms in Figure 6).

From this analysis we found that:

• for both extratropical storms and thunderstorms, a significant increase of

the number of outage-free grid cells was measured after ETT was per-

formed. This increase, according to Figure 8, corresponded to an average360

decrease of grid cells with outages, ranging between 43% and 69% for

thunderstorms , 50% and 67% for extratropical storms, and 49% and 65%

for the combination of the two.

• the areas that received tree trimming were associated with a lower normal-

ized percentage of zeros before ETT. This means that ETT was correctly365

performed in the most vulnerable areas;

• for both extratropical storms and thunderstorms, the slopes of the weighted

linear regression models before and after ETT differred each other at

α = 0.05 confidence level. The Z value for the difference in slopes for the

dataset obtained by the combination of extratropical storms and thun-370

derstorm was Z=-2.25. This finding implied that, under the assumptions

valid for this statistical analysis, the higher the cumulative ETT is, the

higher its impact on outage reduction will be.

This last result based on the count of outage-free grid cells contradicts the

absence of trend of OOF for increasing ETT. The difference between these375

two findings could be explained by the different assumptions used and by the

different quantities involved, and more in detail:

• despite the vast majority of the grid cells had zero or one outage per storm,

2% of the cells had more than one outage. A reduction of outages due to

tree trimming in highly impacted grid cells did not affect the statistics for380

presence/absence of outages, but did affect the OOF;
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Figure 8: Normalized percentage of zeros for varying ETT before (orange markers) and after

(green markers) ETT was performed, for extratropical storms (left) and thunderstorms (right),

with weighted linear least square regression lines overlaid.

• we assumed that the use of the OPM produced a normalization for storm

intensity, and was able to remove temporal inconsistencies in the dataset,

due to a varying storm selection across the years, or a trend of storm

intensity. This assumption was not valid for the statistical method;385

• the Z value (equation 5) of -2.25 was very close to the threshold of rejection

of -1.96. This means that the conclusions on statistical significance could

be reversed by assuming a 3-sigma limit instead of a 2-sigma.

Moreover, the lack of a clear trend in the increase of reliability for increasing

tree trimming may be explained by the fact that not all power lines are placed390

next to trimmable trees. Consequently, similar increases are found (not shown

in this paper) for locations where different amounts of ETT were performed,

but corresponding to the same percentage of trimmed overhead lines.

Similarities in the results between the two approaches consist in the statis-

tical significance of the average impact of tree trimming on power outage. By395

combining the results from the two methods we estimate, under different as-

sumptions, that ETT produced a 16% to 65% reduction of the number of power

outages.
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5. Concluding remarks

The comparison performed in this work between the statistical analysis of400

the number of outage-free grid cells and of the OOF provided an improved

understanding of the relationships between ETT (a vegetation management

standard in Connecticut that represents removal of trees within 8 feet of power

lines), outages, line length and storm severity.

The analysis of the data started with a direct evaluation of the reduction of405

the number of outages and of the increase of outage-free grid cells due to tree

trimming. Using such a simplistic approach, we estimated a 10 fold decrease of

the number of outges in extensively trimmed areas, with a significant trend of

outage reduction for increasing ETT.

However, highly trimmed areas corresponded to areas with a lower OH line410

length, where a lower value of power outages was expected. By taking into

account the OH line length in the study, we found that most of the outage re-

duction variability was explained by this quantity, and tree trimming accounted

for a 49% to 65% reduction of grid cells with outages, with a statistically sig-

nificant outage reduction trend for increasing ETT.415

This approach did not take into account the variability of storm intensity.

For this reason, we used an OPM to estimate the change in the OOF for different

ETT ranges. The ETT impact on outage reduction based on this method was

estimated between 16% and 48%. However, the model overestimation did not

show any statistically significant trend for varying ETT (results are summarized420

in Table 1).

Further investigation is needed to explore the high variability in the relation-

ship of ETT and outage rates. In a future study we will use a LIDAR-derived

product describing the proximity of trees to power lines [23] as proxy to trimmed

and trimmable areas, and use this dataset to study the change of reliability for425

varying trimmed areas.

The framework presented in this work will inform utilities as well as regula-

tors and town officials about the efficiency of vegetation management programs
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Method: ETT only: Statistical: Modeling:

Outage reduction: Thunderstorms 87% - 89% 43% - 69% 36% - 63%

Outage reduction: Extratropical 87% - 91% 50% - 67% 13% - 52%

Outage reduction: Combined 87% - 91% 49% - 65% 16% - 48%

ETT amount (slope): Thunderstorms signif. signif. not signif.

ETT amount (slope): Extratropical signif. signif. not signif.

ETT amount (slope): Combined signif. signif. not signif.

Table 1: Summary of the principal findings of this work.

in terms of improving the reliability of the system, and consequential financial

benefits from reduction of outage rates. The continuation of this study will430

focus on outage reductions to economic benefits continuation of this work, and

a step forward for the definition of optimal vegetation management and urban

planning strategies for maximizing the benefits for utilities and its ratepayers.

Moreover, the OPM can benefit from an extension of this study through:

• the implementation of the expected reduction of outages due to ETT,435

which may provide corrections to the model in areas of significant trim-

ming;

• the use of ETT as a predictor, in order to quantify outage variability due

to tree trimming.
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Appendix A. Predictor variables

Variable Description Units

PercConif Percentage of coniferous forest %

PercDecid Percentage of deciduous forest %

PercDevel Percentage of developed area %

Wgt5 Duration of wind at 10 m above 5 m/s hr

Wgt9 Duration of wind at 10 m above 9 m/s hr

Wgt13 Duration of wind at 10 m above 13 m/s hr

MaxW10m Maximum wind at 10 m m s−1

Cowgt5 Continuous duration of wind at 10 m above 5 m/s hr

Cowgt9 Continuous duration of wind at 10 m above 9 m/s hr

Cowgt13 Continuous duration of wind at 10 m above 13 m/s hr

MeanW10m Mean wind at 10 m m s−1

Ggt13 Duration of wind gusts at 10 m above 13 m/s hr

Ggt17 Duration of wind gusts at 10 m above 17 m/s hr

MaxGust Maximum wind gusts at 10 m m s−1

MeanGust Mean wind gusts at 10 m m s−1

MaxTotPrec Total precipitation mm

MaxPreRate Maximum precipitation rate mm h−1

MeanPreRate Mean precipitation rate mm h−1

MaxSoilMst Maximum Soil Moisture m3 m−3

MeanSoilMst Mean Soil Moisture m3 m−3

MaxSpHum Maximum Specific Humidity g g−1

MaxTemp Maximum Temperature K

MeanTemp Mean Temperature K

LAI Leaf area index m2 m−2

Table A.1: Variables used as input to the OPM.
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