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Proposed Work & Progress

Project Tasks

* Improve the System Performance Model to incorporate multiple parameter
interplays (T1: ongoing)

* Develop fragility response surfaces capturing parameter interplays (T2:
ongoing)

e Analyze cost savings for the utility company (T3: ongoing) & society (starting)

 Develop model to optimally allocate resources and resilience strategies
accounting for system impact and recovery cost (T5: starting)

Progress
e Power distribution system fragility modeling

* Physics-based modeling for pole failures
e Fragility surface (multiple dimensions)

e Resilient System Modeling
e Power distribution system vulnerability analysis; soil vulnerability is included
e Power distribution system reliability assessment
e Power distribution system outage prediction and utility/societal cost analysis
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Fragility Modeling

* Finite element method

e A power distribution system (PDS) finite element
model is built.

e Hybrid physics-based and data-driven (HPD)
Model

* Non feasible to model all environmental load
combinations, span lengths, etc. '

e A hybrid model could improve both the physics-
based modeling and OPM interactions

Training data:
histarical weather

and outage events
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UConn-OPM Architecture (cerrai et al. 2019)
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Vulnerability Analysis

 Based on graph theory, PDS is modeled as
a graph G (V, E)
* Fragility Surface

» Fragility surface regrading wind speed and span Topology of a large-scale PDS
length is developed since the span length is @
specific
*  Prpore s derived from this surface 0 9
. Fraglllty based weight
Derived from fragility surface based on @ 6
deterministic wind speed and span length 1(2]3|a]s 1(2]|3|afs
« Span length is calculated based on GIS database |1 |o|1|1]|1]o0 1] 0 jwiy| O s wis
» Pole-wire subsystem failure probability 2{1fof1]{ofo]| |2ws|0ms|o]o
determined as sfafafofa]|a| |3]0wal0]0 s
Prsups = 1= (1= Prporey) * (1 — Prwire) * (1 — Prpoter) sl1lol1lo]1 4 walolo]o]fo
» The weight of the graph model is determined as slololilzlo 5 Wwys| O ws| 0| O
1

Wij = Traditional adjacency matrix Fragility-based adjacency matrix

1- Pfsubs
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Results

Vulnerability analysis
» A power distribution system in Fairfield County,

Connecticut
« Static Analysis (after failure, weights become 0)
* A comparison of vulnerability assessment outcomes is )
performed for different categories of hurricanes ‘§ o
« Dynamic Analysis (node load is redistributed) i
» The static vulnerability analysis overestimates the failure §§
impact (complementary to efficiency) on PDS performance. : §§ i
 The PDS performance is decreasing with increasing number % %5 v - :}j .,
of node failures and fragility-based PDS performance is 53@:

relatively higher than the topology-based analysis.
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Vulnerability analysis

» Fragility surfaces (pole diameter, span, wood type, soil properties)
« Soll Vulnerability maps produced via kriging and SPTN CT data
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Boring Locations and SPTN Values
Thin. map fustrates interpolated SPTH values based on the data from

spiy exction. Kirigeng, & tyee: i, abowwend
the determination of SPTH values in tetween data points.
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Results (contd.)
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Outage Prediction and Cost Analysis

« Qutage prediction and cost analysis
* Assuming pole fragility is linearly correlated with the outage
count per asset 3, rescaled fragility curve can be used to

predict outages
« Scaling will vary with location (different terrain, pole ages, span lengths)
and storm (different times, vegetation, weather combinations)
» These calibrated scaling factors can be predicted using OPM
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Outage Prediction and Cost Analysis

Outage prediction and cost analysis

» Cost analysis for Interventions

« Demonstrative representation: pole replacement

o Oldest 6% replaced, then pole age distribution is assumed constant
* Notable outage reductions observed for only ~25% of storms
« Total outages reduced annually: 47 (S2), 104 (S3), 246 (S4)
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High replacement cost,
r=3%
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Results (contd.)

Outage prediction and cost analysis
e Cost analysis

System Safety, 207: 107367
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Results (contd.)

Cost analysis accounting for consumer costs/attitudes

« Restoration decisions are primarily made focusing on
minimizing restoration time/cost; the social impact is not well

addressed

« Customer outage cost and “attitude” can be factored in as
weight utility/consumer
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Social-Cost-Based Dynamic Restoration
Decision-Making

« Social impact of power outages can be quantified using the concept of
social cost measured by Willingness-to-Pay (WTP) to essential services

» Social cost can be different for residential and commercial consumers

* An October 2017 storm with high wind, strong wind, and flooding was

modeled with agent-based software Anylogic

« Data included: Storm duration; 4,516 disrupted poles; 9 damaged asset
classes; Repair time for each asset class; Crew information

Simulation Restoration Number of
Experiments Prioritization Rule  crew
Base Case Same priority 144
Experiment 1 Social-cost based 144
priority
Epota e DI = re S E e e
priority
]
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Summary and Conclusions

* Vulnerability analysis conducted via graph theory augmented by fragility
weights

 PDS performance is better with fragility-based than topology-based analysis

* The static analysis overestimates storm impacts

* A hybrid physics-based data-driven model incorporating fragility curves and
outage prediction modeling is proposed

» Hybrid model shows reasonable predictive capabilities similar to data-driven
OPM while allowing for simulation of grid hardening

» Fragility surfaces are being developed (soil, pole and wind characteristics); soll
vulnerability maps are being developed

* Interventions are favored for major events and low discount rates

* When consumer attitude is accounted for more expensive strategies are
chosen

» Using social-cost-based prioritization rule in restoration, social cost of outage
decreases significantly

» Social cost will continue decreasing as the number of crews increases, with an
increase in operational cost

» Social-cost-based prioritization gradually loses its benefits with increased
resource level (e.g., crew size)
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