Resilience System Modeling and Dynamic Economic Impacts

Amvrossios (Ross) Bagtzoglou; Wei Zhang; Jin Zhu; Marisa Chrysochoou Jintao Zhang; William Hughes; Qin Lu; Brenden Edwards; Sudipta Chowdhury

amvrossios.bagtzoglou@uconn.edu

Please email me for questions and paper requests

Proposed Work & Progress

Project Tasks

- Improve the System Performance Model to incorporate multiple parameter interplays (T1: ongoing)
- Develop fragility response surfaces capturing parameter interplays (T2: ongoing)
- Analyze cost savings for the utility company (T3: ongoing) & society (starting)
- Develop model to optimally allocate resources and resilience strategies accounting for system impact and recovery cost (T5: starting)

Progress

- Power distribution system fragility modeling
 - Physics-based modeling for pole failures
 - Fragility surface (multiple dimensions)
- Resilient System Modeling
 - Power distribution system vulnerability analysis; soil vulnerability is included
 - Power distribution system reliability assessment
 - Power distribution system outage prediction and utility/societal cost analysis

Eversource Energy Center

Fragility Modeling

• Finite element method

UCONN

- A power distribution system (PDS) finite element model is built.
- Hybrid physics-based and data-driven (HPD) Model
 - Non feasible to model all environmental load combinations, span lengths, etc.
 - A hybrid model could improve both the physicsbased modeling and OPM interactions

UConn-OPM Architecture (Cerrai et al. 2019)

EVERSURCE

Vulnerability Analysis

- Based on graph theory, PDS is modeled as a graph *G* (*V*, *E*)
- Fragility Surface
 - Fragility surface regrading wind speed and span length is developed since the span length is specific
 - *P_{fpole}* is derived from this surface
- Fragility-based weight
 - Derived from fragility surface based on deterministic wind speed and span length
 - Span length is calculated based on GIS database
 - Pole-wire subsystem failure probability determined as

$$P_{fsubs} = 1 - \left(1 - P_{fpole,l}\right) * \left(1 - P_{fwire}\right) * \left(1 - P_{fpole,r}\right)$$

• The weight of the graph model is determined as

$$w_{ij} = \frac{1}{1 - P_{fsubs}}$$

Traditional adjacency matrix

Fragility-based adjacency matrix

EVERS=URCE

UCONN

Eversource Energy Center

Results

Vulnerability analysis

- A power distribution system in Fairfield County, Connecticut
- Static Analysis (after failure, weights become 0)
 - A comparison of vulnerability assessment outcomes is performed for different categories of hurricanes
- Dynamic Analysis (node load is redistributed)
 - The static vulnerability analysis overestimates the failure impact (complementary to efficiency) on PDS performance.
 - The PDS performance is decreasing with increasing number of node failures and fragility-based PDS performance is relatively higher than the topology-based analysis.

TELEVISION

5

UCONM

Vulnerability analysis

- Fragility surfaces (pole diameter, span, wood type, soil properties)
- Soil Vulnerability maps produced via kriging and SPTN CT data

Ma et al., 2021, "Local System Modeling Method for Resilience Assessment of Overhead Power Distribution System under Strong Winds", *ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.*, 2021, 7(1): 04020053

Boring Locations and SPTN Values This map illustrates interpolated SPTN values based on the data from each sample location. Kriging, a type of geospatial analysis allowed for the deterministion of SPTN values in between data pairsts.

Edwards, B., 2021, MS Thesis, UConn (in review)

EVERSURCE

Eversource Energy Center

Ma et al., 2021, "Local System Modeling Method for Resilience Assessment of Overhead Power Distribution System under Strong Winds", ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2021, 7(1): 04020053

Eversource Energy Center

Outage Prediction and Cost Analysis

- Outage prediction and cost analysis
 - Assuming pole fragility is linearly correlated with the outage count per asset β, rescaled fragility curve can be used to predict outages
 - Scaling will vary with location (different terrain, pole ages, span lengths) and storm (different times, vegetation, weather combinations)
 - These calibrated scaling factors can be predicted using OPM

Example rescaled fragility curve for Hurricane Sandy (left) and random storm (right)

UCONN

Eversource Energy Center

8

EVERS=URCE

Outage Prediction and Cost Analysis

Outage prediction and cost analysis

- Cost analysis for Interventions
 - Demonstrative representation: pole replacement
 - Oldest δ % replaced, then pole age distribution is assumed constant
- Notable outage reductions observed for only ~25% of storms
- Total outages reduced annually: 47 (S2), 104 (S3), 246 (S4)

Outage prediction and cost analysis

- Cost analysis
 - Customer outage cost and discount rate varied due to uncertainties
 - Low discount rates and high outage counts make interventions favorable

Hughes et al., 2021, "Damage modeling framework for resilience hardening strategy for overhead power distribution systems", *Reliability Engineering and System Safety*, 207: 107367

(a) r = 3% (b) r = 5% (c) r = 7% 150 150 150 Stragegy 2 Stragegy 2 Stragegy 2 Net Savings (\$ Million USD2019) Savings (\$ Million USD2019) (\$ Million USD2019) 100 100 Stragegy 3 **G**-Stragegy 3 Stragegy 3 Stragegy 4 October Stragegy 4 Stragegy 4 50 50 50 -50 -50 -50 -100 -100 Savings (-100 -150 -150 -150 Net Net -200 -200 -200 -250 -250 -250 20 40 20 40 60 40 60 0 60 80 0 80 20 Outage Cost (\$ Thousand USD2019) Outage Cost (\$ Thousand USD2019) Outage Cost (\$ Thousand USD2019)

Projected savings under various scenarios

Eversource Energy Center

EVERSURCE

Cost analysis accounting for consumer costs/attitudes

- Restoration decisions are primarily made focusing on minimizing restoration time/cost; the social impact is not well addressed
- Customer outage cost and "attitude" can be factored in as weight utility/consumer

Weight	Most favorable strategy number	Strategy
$0 \le w_{FC} < 0.2$	Strategy 11	40% poles being replaced with upgraded class ones
$0.2 \le w_{FC} < 0.42$	Strategy 9	30% poles being replaced with upgraded class ones
$0.42 \le w_{FC} < 0.72$	Strategy 7	20% poles being replaced with upgraded class ones
$0.72 \le w_{FC} \le 1$	Strategy 5	10% poles being replaced with upgraded class ones

Fig. 8 Sectional cost of 12 hardening strategies

Social-Cost-Based Dynamic Restoration Decision-Making

- Social impact of power outages can be quantified using the concept of social cost measured by Willingness-to-Pay (WTP) to essential services
- Social cost can be different for residential and commercial consumers
- An October 2017 storm with high wind, strong wind, and flooding was modeled with agent-based software Anylogic
- Data included: Storm duration; 4,516 disrupted poles; 9 damaged asset classes; Repair time for each asset class; Crew information

Simulation Experiments	Restoration Prioritization Rule	Number of crew
Base Case	Same priority	144
Experiment 1	Social-cost based priority	144
Experiment 2	Social-cost based priority	244/344

EVERSURCE

Summary and Conclusions

- Vulnerability analysis conducted via graph theory augmented by fragility weights
- PDS performance is better with fragility-based than topology-based analysis
- The static analysis overestimates storm impacts
- A hybrid physics-based data-driven model incorporating fragility curves and outage prediction modeling is proposed
- Hybrid model shows reasonable predictive capabilities similar to data-driven OPM while allowing for simulation of grid hardening
- Fragility surfaces are being developed (soil, pole and wind characteristics); soil vulnerability maps are being developed
- Interventions are favored for major events and low discount rates
- When consumer attitude is accounted for more expensive strategies are chosen
- Using social-cost-based prioritization rule in restoration, social cost of outage decreases significantly
- Social cost will continue decreasing as the number of crews increases, with an increase in operational cost
- Social-cost-based prioritization gradually loses its benefits with increased resource level (e.g., crew size)

