Cyber and physical security

Protecting Critical Infrastructure from UAV Threats- Developing an Integrated Multi-Sensor System for UAV Detections

Pl: Chandi Witharana

Dept. of Natural Resources and the Environment

Co-I: Sandro Steinbach

Dept. of Agricultural and Resource Economics

Contact:

chandi.witharana@uconn.edu

Unmanned Aerial Vehicle(UAVs) (*drones*) can pose a threat to critical infrastructure through accidental or intentional crashes or by delivering damaging payloads to substation components.

Investigate existing products and technologies for detecting UAVs.

- Development of UAV test facility integrating multiple types of sensors and UAVs.
- Set up commercial UAV detection products (RADAR, LiDAR, Radio Frequency) at a pilot substation.
- Evaluate the effectiveness of sensors during various weather conditions, UAV flight scenarios, environment settings, and determine the benefits of combining multiple sensor types into a detection system.
- Development of a gateway to integrate multiple sensors and maximize performance.
- Perform an economic cost-benefit analysis for investments in securing substations against UAV threats.

UCONN

Economic Analysis

Determine if it is worthwhile to invest in UAV detection systems. Find the equipment option with the best return on investment.

Cost-Benefit Analysis: Economic evaluation technique that quantifies and compares the benefits and costs of different investment options.

Cyber and physical security

Protecting Critical Infrastructure from UAV Threats- Developing an Integrated Multi-Sensor System for UAV Detections

Pl: Chandi Witharana

Dept. of Natural Resources and the Environment

Co-I: Sandro Steinbach

Dept. of Agricultural and Resource Economics

Contact:

chandi.witharana@uconn.edu

