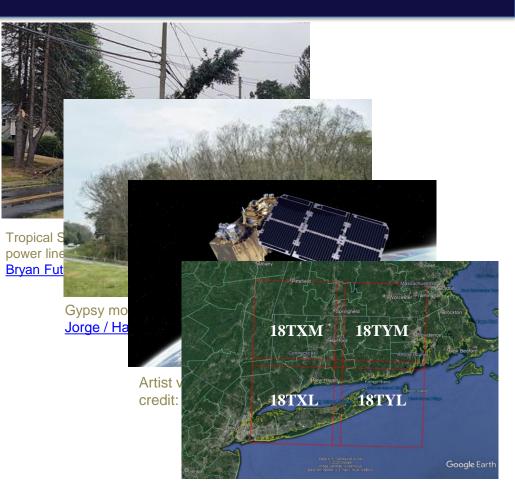
### Assessing Forest Risk to Infrastructure Using Remotely Sensed Imagery

Zhe Zhu & Kexin Song

GERS Laboratory, Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT


Eversource Energy Center PI meeting 04/01/2021

**EVERSURCE** 

## UCONN

## Background

- CT is a highly forested area and many places have experienced **outages during or after storms** due to fallen trees.
- Stressors, such as **insects and diseases** will affect health and vitality of the forest significantly, and unhealthy trees are more likely to break or fall during storms.
- Remote sensing technology provides new opportunities to monitor forest disturbance and disturbance types in near real-time, large-scale, and detailed information.



**Figure 1.** Four Sentinel-2 MGRS tiles covering the area of CT.



- Near real-time monitoring of roadside and right-of-way (ROW) forest disturbances in CT at 10-meter resolution using Sentinel-2 time series. (Year 1)
- 2. Near real-time characterization of roadside and ROW forest disturbance type (e.g., wind, flood, harvest, mechanical, and stress-related such as insects and drought). (Year 2)
- **3. Near real-time assessment** of roadside and ROW forest disturbance risk to Eversource infrastructure in CT. (Year 3)

### Impacts

- 1. Monitoring forest disturbance and disturbance type in near real-time (within a few weeks) at roadside and ROW is of great importance for **maintaining a well-updated database of vegetation risk**.
- 2. Rapidly updated maps of vegetation risk could be an **important input to models** that seek to predict the location and rate of electrical outages during storms, such as the UConn Storm Outage Prediction Model.
- 3. Such maps could also be highly valuable to decisionmakers in **allocating limited resources for tree management and removal** to be most effective at reducing risks to infrastructure.

### Flowchart of Sentinel-2 ARD Preparation

Step 1. unzip L1C data

- Step 2. atmospheric correction
- Step 3. mask cloud and cloud shadow
- Step 4. image resample (20-m to 10-m)
- Step 5. BRDF correction

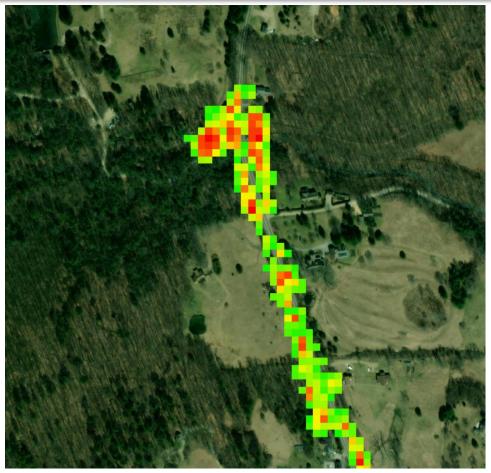


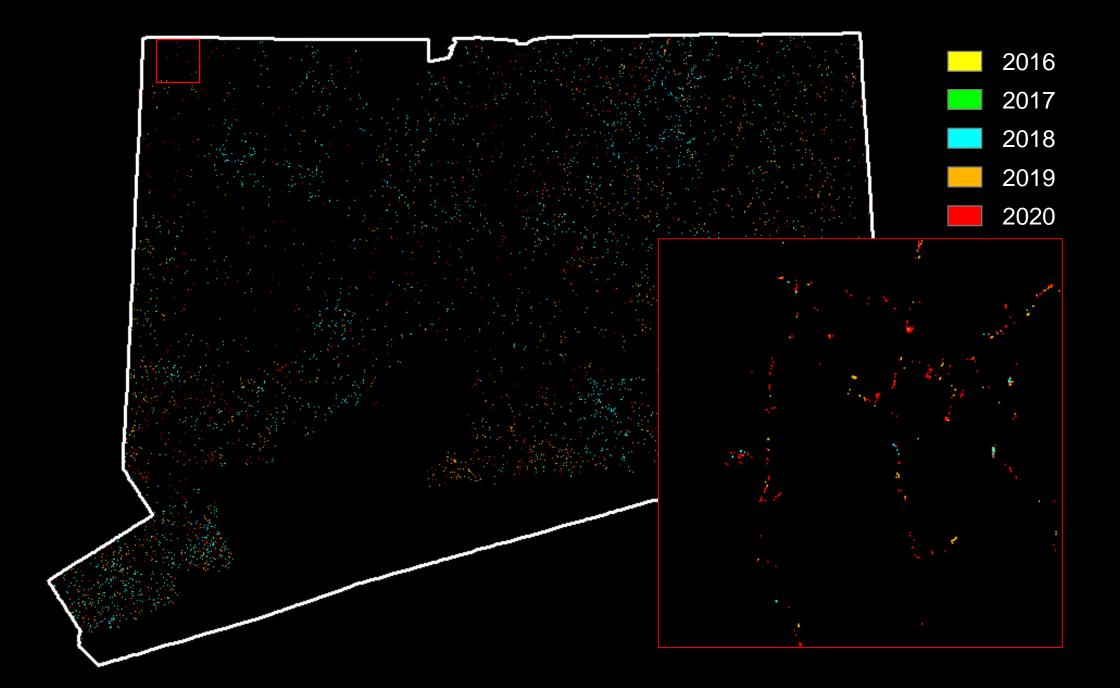

Figure 3. Flowchart of Sentinel-2 (S2) ARD preparation.

### Create 10 m Mask from Proximity Pixels



**Figure 5-a.** Proximity pixel raster #465. Cell size: 4 ft. Coordinate reference system (CRS): NAD\_1983\_StatePlane\_Connecticut\_FIPS\_0600\_Feet.




**Figure 5-b.** Sub-pixel map (a density map). Cell size: 10 m. Coordinate reference system (CRS): WGS 84 / UTM zone 18N.

6

High: 100%

Low: 0





#### Super-resolution Methods



Baseline: Bicubic

reference

Method 1: Luo

Method 2: SpecTrans Method 3: DSen2

## Summary of Effort

- 1. We have finished the **pre-process of Sentinel-2 images** (2015 2020) including atmospheric correction, cloud/cloud shadow masking, and BRDF correction.
- 2. The **10 m subpixel map** is generated by aggerating high-resolution tree proximity pixels.
- 3. A **preliminary 10 m ROW forest disturbance map** was produced from 10 m Visible-NIR bands and two resampled SWIR bands (cubic).
- 4. Three different **image super-resolution methods** was explored for red-edges, narrow NIR, and two SWIR bands. The best RMSEs for the test image are under 0.01.

## On-going Work

- 1. Apply image super-resolution methods to Sentinel-2 time series.
- 2. Conduct accuracy assessment and write report on forest disturbance product

# **Project Timeline and Deliverables**

| Timeline      | Deliverables                                                                                                                                                                                            |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| November 2020 | - Sentinel-2 analysis ready data for CT                                                                                                                                                                 |
| May 2021      | <ul> <li>Maps of roadside and ROW forest disturbance in CT that are updated in near real-time</li> <li>Reports on near real-time monitoring of roadside and ROW forest disturbance</li> </ul>           |
| November 2021 | - Roadside and ROW forest disturbance location, time, and type reference data                                                                                                                           |
| May 2022      | <ul> <li>Maps of roadside and ROW forest disturbance type that are updated in near real-time</li> <li>Reports on near real-time characterization of roadside and ROW forest disturbance type</li> </ul> |
| November 2022 | - Risk prediction model based on forest disturbance magnitude and type.                                                                                                                                 |
| May 2023      | <ul> <li>Maps of quantified risks of roadside and ROW forest disturbance (of different types) to<br/>Eversource infrastructure in CT that are updated in near real-time</li> </ul>                      |
|               | <ul> <li>Reports on near real-time quantification of roadside and ROW forest disturbance (of<br/>different types) to Eversource infrastructure in CT</li> </ul>                                         |

## Thanks! Questions?



