Power System Botnet Cyber Attack: Machine Learning based Analysis and RTDS Simulation

Sean Youngblood, Lynn Pepin, Sung-Yeul Park, Fei Miao

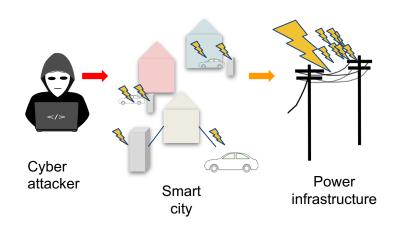
Outline

- Introduction: Power Botnets
- Co-Simulation and Two Stage Training
- Simulated Attack Results
- Next phase

Introduction: Power Botnet Attacks

Motivation: The increasing prevalence of high-wattage smart devices represents a new vulnerability for power infrastructure: **Vulnerable high-demand devices at the grid edge.**

An attacker controlling many of these devices can cause **unnatural demand spikes** to cause **hardware damage**, even **blackouts**. (*See "BlackloT" by Soltan et. al., 2018*).


This is a **cyber-attack** against power-infrastructure which targets **consumers at the edge**, rather than internal / SCADA computer systems.

Research summary:

1) Design and analyze various power botnet attack scenarios

2) Design detection and localization schemes based on machine learning

3) Verify physical system botnet attack resiliency using HIL co-simulation between OpenDSS and RTDS

Eversource Energy Center

Co-Simulation

•

Re. vel 0.030

-

×1 • M

65

RTDS: IEEE 13

N.

×8 •×

652

1

×B •X

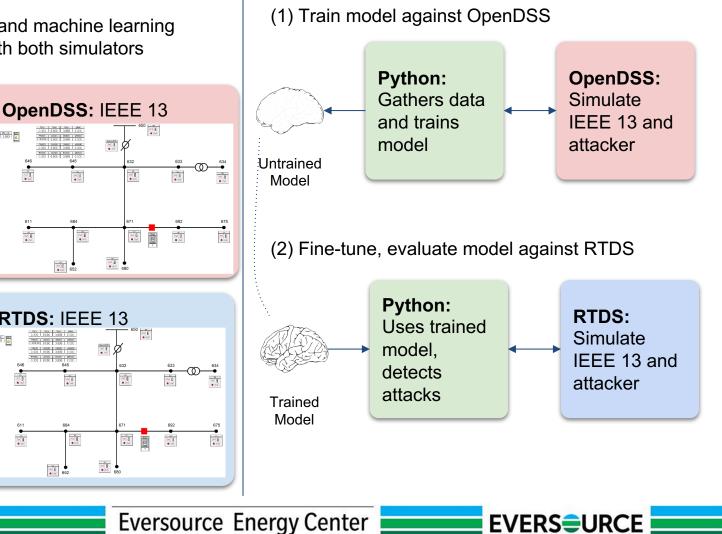
OpenDSS and RTDS share IEEE 13 simulation

Import as

module

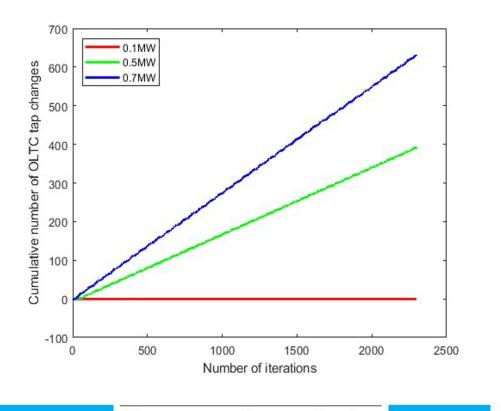
TCP

socket


UCONN

Python:

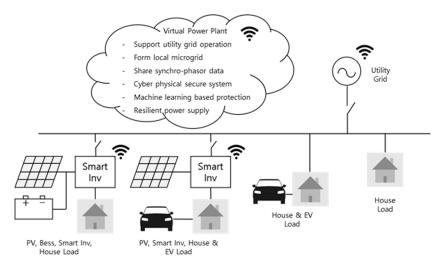
Glue code


Python glue code and machine learning model interacts with both simulators

Two-Stage Training

Simulated Attack Results

"Flipping-attack" logic in Python, simulation in RTDS
More attacker power = more infrastructure damage



Eversource Energy Center

Next phase: Secure and Resilient Residential Photovoltaic Systems based on Smart Inverter and Battery Energy Storage Systems

Proposed secure, resilient residential power network

RTDS and Lucas-Nuelle testbed

Design smart inverter and virtual power plant

Build a testbed:

- RTDS will simulate grid-connected DERs
- Interface the RTDS with Lucas Nuelle power system hardware
- Synchrophasor capability will be added to the grid-connected inverter
- Survey cryptographic communication protocols
- High-level design of a secure communication standard

UCONN

Eversource Energy Center

