Legacy and Shockwaves

A spatial analysis of strengthening resilience of the power grid in Connecticut

Adam Gallaher, University of Connecticut Marcello Graziano, Southern Connecticut State University Maurizio Fiaschetti, University College London

Introduction

- The electric grid is a network connected across space
 - Interactions with one part of the grid can have implications down or up stream
- Understanding how costs or benefits (outages or avoidance) propagate throughout the state
- Finding those links between TTOs and tree-caused power outages (>5 minuets) within Connecticut from 2009 to 2015
- Specifically:
 - We want to investigate whether spatial spillovers throughout the grid increase the spatial extent of TTO benefits previously found by Parent et al. (2019) and Graziano et al. (2020)
 - Are these benefits pervasive in time?
 - Do TTO benefits last four years?

EVERSURCE

Data sources

Variable	Observations	Mean	Std. Dev.	Min	Max	Source
Distribution Lines in m	21,623	8,842.60	6,536.00	3.00	43,710	Eversource Energy
Four-year legacy of TTOs	21,623	0.29	0.45	0.00	1	Eversource Energy
Number of tree outages	21,623	4.84	9.28	0.00	142	Eversource Energy
Log duration of tree outages in min	21,623	5.49	3.69	0.00	13.54	Eversource Energy
Customers affected by tree outages	21,623	210.62	622.77	0.00	17,356	Eversource Energy
Squared sum of average precipitations	21,623	86.78	36.89	0.00	243.72	Thornton (2017)
Squared sum of average maximum temperature	21,623	340.01	32.83	0.00	425.32	Thornton (2017)
Squared sum of average minimum temperature	21,623	117.13	11.39	0.00	154.12	Thornton (2017)
Cooling degree days	21,623	24,684.57	3,498.14	0.00	34,478.10	Author derived
Heating degree days	21,623	36,973.24	12,535.94	0.00	73,446	Author derived
Percent forested	21,623	52.43	24.01	0.00	96	USGS GAP

1 Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarkonda, R., Vose, R. S., & Cook, R. B. (2017). Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. ORNL Distributed Active Archive Center. <u>https://doi.org/10.3334/ORNLDAAC/1328</u>.

⁴ USGS GAP. <u>https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap</u>

Modeling TTOs and Tree-caused Power Outages

Temporal Modeling

- Panel regression at 2 and 4km
- OLS, Poisson, Negative Binomial
- Dependent variables
 - Tree-cased outages, duration, customers affected
- Independent variables
 - Percent forested, four-year trimming legacy, metrological, and error term

Modeling TTOs and Tree-caused Power Outages

Spatial-Temporal Modeling

- Spatial-Panel regression at 2 and 4km
- Spatial autoregressive (SAR)
 - Time-dependency
- Spatial Durbin Model (SDM)
 - Spatial heterogeneity
- SAR and SDM share a spatial weighting matrix (queen row standardized)
- Log of X per km of distribution lines per cell

UCONN

UCONN

Eversource Energy Center

EVERSURCE

TTOs in real terms

Spatial-Temporal 2km Results

- Average reduction in outages per year
 - 91 fewer (within a cell)
 - 737 fewer (neighboring cells)
- Average reduction in duration
 - 364.81 (within a cell)
 - 88,142.72 (neighboring cells)
- Average reduction in customers affected
 - 2,134 (within a cell)

UCONN

• 19,446 (neighboring cells)

TTOs in real terms

Temporal 2km results

- 900 fewer outages per year
- Reduction of 5,575,898 outage minuets per year
 - 54% of total outages
- 18,186 fewer customers affected per year on average

- Special thanks to the various agencies and entities who provided data
- The Eversource Energy Center
 - Dr. David Wanik and Dr. Emmanouil N. Anagnostou

Thank you

Contact:

adam.gallaher@uconn.edu

Gallaher, Adam, Marcello Graziano, Maurizio Fiaschetti. (2021) Legacy and Shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut. *Energy Policy*, 159: 112582. DOI:

https://doi.org/10.1016/j.enpol.2021.112582

EVERSURCE

