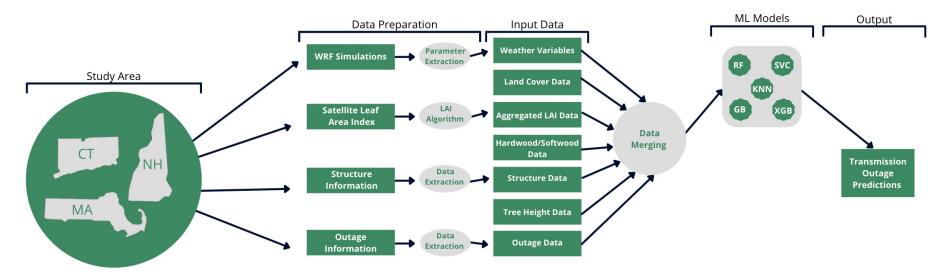
OBJECTIVE

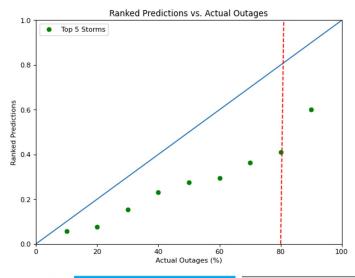
- To build upon the University of Connecticut's (UConn) Outage Prediction Model (OPM), a model used to predict distribution outages, to create a combined machine learning based and mechanistic damage prediction system for the transmission network.
 - This model will use geolocated information of transmission facilities as well as infrastructure and environmental conditions to predict the probability of failure of individual facilities.
 - Multiple python-based machine learning models will be created and validated using different algorithms to determine the best algorithm for transmission system outages.

MOTIVATION



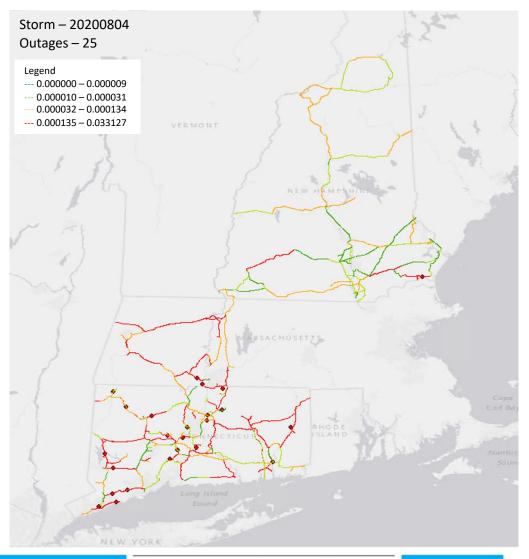
METHODS

Top 5 Storms and Outages									
Storms	2020080400	2018030700	2017102906	2018030200	2018051512				
Outages	25	9	8	7	5				



RESULTS AND DISCUSSIONS

	Top 5 Largest Storms			All Storms		
Model	70% of Outages in top X% of Preds:	80% of Outages in top X% of Preds:	90% of Outages in top X% of Preds:	70% of Outages in top X% of Preds:	80% of Outages in top X% of Preds:	90% of Outages in top X% of Preds:
<u>Baseline</u>	<u>58.8</u>	<u>62.2</u>	<u>69.5</u>	<u>47.1</u>	<u>52.0</u>	<u>54.6</u>
Default XGBoost + All Inputs	56.3	66.5	73.3	38.8	46.4	48.5
All Vars + Overfit Reduc. Iteration 1	45.7	49.8	56.0	38.8	42.4	44.9
All Vars + Overfit Reduc. Iteration 2	58.8	64.6	69.6	35.3	41.0	45.6
Mean Vars + Overfit Reduc. Iter. 1	36.3	41.1	60.2	35.9	40.8	43.9



CONCLUSION

- Developed ML framework prototype to predict outages in transmission systems
- Trained on 5 years of transmission failures in the Eversource service territories
- ML framework shows some skill and great potential considering the limited amount of data available so far

FUTURE WORK

- Looking to expand training dataset in time and space through collaborations with other utilities
- Create unified model by combining ML model with structural model
- Improve variable selection and adding in snow variables
- Adding finer resolution for trees

Contact: sita.nyame@uconn.edu

