

Evaluation of the new OPM winter model

Xinxuan Zhang
Eversource Energy Center, University of Connecticut

November 19, 2021

* OPM: outage prediction model

The OPM operational system:

* OPM: outage prediction model

Eversource Energy Center

EVERSURCE

Winter storms

When wintry precipitation occurs, there are three main factors responsible for outages

- Strong winds and gusts.
- Snow and ice accretion.
- Leaves on trees.

When these factors combine together, catastrophic events can occur.

Damaged power line (left) and trouble spots (right) during the 2011 nor'easter.

Eversource Energy Center

Winter storms: what we know

- Linear trend of mean outages per grid cell for snow density between 50 and 105 kg/m³.
- Spike of outages between 105 and 130 kg/m³, peaking at 115 kg/m³: heavy, wet snow.
- Increase of outages for freezing rain above 20 mm.

Cerrai et al., 2020a

- ☐ The OPM winter model has been operational in CT since early 2018;
- ☐ Updated in 2020 for CT, included EMA, WMA, and NH;
- ☐ A new version is available in Nov. 2021.

New OPM winter model: Version 2021

Highlights

- 188 historical winter storms (2005-2021)
 - Newly added 30+ storms to the database since the last model version
- Two machine learning methods
 - Random Forest (RF)
 Gradient Boosting Machine (GBM)
- Model optimization (final product of the winter model)

 Combine and optimize the RF and GBM methods
- Improvements

Winter model v2021 versus Winter model v2020

The current model employed in the operational system

OPM winter models: version 2020 versus version 2021

Actual # of trouble spots

v2020	APE q50	MAPE
All territories	66%	157%
СТ	78%	255%
EMA	78%	200%
NH	45%	90%
WMA	64%	130%

Winer model v2021

Actual # of trouble spots

v2021	APE q50	МАРЕ
All territories	60%	84%
СТ	59%	133%
EMA	68%	76%
NH	48%	58%
WMA	67%	77%

APE q50: median absolute percentage error absolute percentage error

Eversource Energy Center

EVERSURCE

Summary

- With updating the winter storm database and the model optimization approach, the new winter model outperforms the current one.
- Future work
 - Continue to collect new winter storms for model updating.
 - Improve the classification method for winter precipitation.
 - Improve the weather prediction for winter storms.

Eversource Energy Center

