A Pathway to Enhance Grid Resilience: Zero-Carbon Energy Communities with DER-based ELCC Quantification

Research Interests:
- Power System Planning and Operation, Optimization,
- Renewable Energy Integration, Grid Resilience.

Selected Awards (Lead-PI):
- Eversource Energy: Distribution system flexible load modeling;
- Eversource Energy: Grid Resilience and ELCC Quantification;
- ISO-NE: DER modeling and ISO-NE market dynamics;
- MISO: Decomposition and coordination approach for Markov-based unit commitment;
- NSF: Machine learning methods and microgrid control;
- BNL: Grid dynamic behavior of solar integration at D levels;
- BNL: Intra-day ahead unit commitment with wind and solar;
- DOE WPTO: Hydropower Optimization Prize.

Zongjie Wang, Ph.D. (Single PI)
Assistant Professor, ECE Department, Eversource Energy Center, UConn

Project Period: 11/2023-11/2026
Industry Relevance & Need

01 Extreme Weather events
- Low-probability;
- Extensive socioeconomic costs and impacts;
- Address Eversource’s need for enhanced grid resilience against events.

02 Critical grid components
- Reduce the likelihood outages;
- Analyze different event behaviors;
- Resilience metrics quantification;
- Provide solutions for future system planning and upgrading schemes.

03 Economic-Resilience Framework
- Find a trade-off between resilience and costs (economic);
- More resilience;
- More cost effective.

04 Resilience & Zero-Carbon Transition
- Advanced tools and methodologies, reinforcing Eversource’s leadership in sustainable energy transitions;
- Charts a progressive course towards the 2050 net-zero emission targets, catalyzing industry-wide adoption.
Primary Goal is to increase the resilience of energy communities by leveraging innovative grid mapping techniques, detailed resilience assessments, and integrating DERs into planning and operations, aligning with Eversource’s strategic direction towards a reliable, resilient, and sustainable energy future.

Project Objectives

- **Mesh-view Grid Mapping for HILP Events**
 Develop a mesh-view grid mapping tool to identify critical grid components and vulnerability areas and optimal resource allocation, for different types of HILP events.

- **Quantitative Resilience Metrics**
 Establish innovative DER-based effective load carrying capability (ELCC) resilience metrics to expedite the restoration and ensure resilient operation of carbon-free energy communities.

- **DER-based ELCC for Resilient Energy Communities**
 Incorporate a probabilistic vulnerability assessment strategy using ELCC metrics with the mesh-view mapping tool for precise event localization and grid components to enable effective resource deployment and improved decision-making for resilience enhancement.
Research Approach
Research Approach

Classifying the uncertain parameters:
- Probability of event occurrence, a number in [0,1].
- Event type; four integers: (1:Tornado, 2:Hurricane, 3:Ice freezing, 4:Earthquake).
- Event severity level; three integers: (1: very extensive, 2:extensive, 3: low extensive).
- Event location; two integers: (x,y) showing the corresponding cell on mesh-view.
- Market price.
- Wind generation.

End
Mesh-view Grid Mapping
- DER-based ELCC quantification;
- Critical grid component identification for various events;
- Resilience-economic framework with Markov stochastic optimization with network topology configuration.

Practical Framework Validation
- Analyze the grid resilience against different natural disasters with different specific resilience criteria;
- Practical distribution system validation with DER integration;
- Provide solutions for future system planning and upgrading schemes.

Resilience Enhancement Tool
- Implement specific resilience assessment matrix for utility needs;
- Real-time adaptability;
- Effective tool for utilities to enhance decision-making and resource allocation for improved resilience.

Long-term goal: Implement the mesh-view grid mapping tool across multi-regional utilities to be flexibly designed and meet specific state-defined information needs for a zero-carbon, resilient, and reliable energy communities.

Project Relevant Publications: