

Estimating Roadside Tree Risk To Grid Resilience and Reliability Using PlanetScope Time Series

09 February 2024

Zhe Zhu, Shi Qiu, Kexin Song, University of Connecticut

Industry Relevance & Need

- 39% of incidents observed in normal weather conditions.

 reliability
- Two important factors influencing the risk are the disturbance and health the roadside and right-ofway (ROW) forests.
- 3 m PlanetScope time series can provide regularlyupdate site-level vegetation risk information.
- Help identify hazardous trees to prevent tree fall events.
- Improve the predictive capability of **grid reliability and resilience**, such as the UConn Storm Outage Prediction Model (OPM).

Eversource Energy Center

A fallen roadside tree in New Canaan in the aftermath of Tropical Storm Isaias (*Hearst Connecticut Media*).

PlanetScope constellation (Planet).

EVERSURCE

The goal of this proposed project is to provide a **forest disturbance** and **health monitoring** framework for roadside **utility risk assessments**.

Objectives:

- Monitor forest disturbances of the study site with 3-m PlanetScope time series and the COntinuous Land disturbance Detection (COLD) algorithm.
- 2. Monitor **forest health changes** with 3-m PlanetScope time series and the temporal autocorrelation (TAC).
- 3. Quantify tree failure risks to grid resilience and reliability using machine learning (deep learning).

Eversource Energy Center

Research Approach

Outcomes and Deliverables

We will employ time series analysis and machine learning (deep learning) to provide:

- Forest disturbance (annual),
- Forest health (weekly or bi-weekly),
- Forest risk products (same frequency as forest health).

These products would help modeling the effects of vegetation management on grid resilience and reliability.

Forest health change (2020 – 2022)

EVERSURCE

UCONN TECH PARK

0.3 0.2

0.1 0

-0.1 -0.2 -0.3

Eversource Energy Center

- This project aligns tightly with the goal of Eversource UConn Partnership Research Pillars.
 - Enabling quick and efficient prioritization of vegetation management efforts to prevent tree fall events and mitigate the risk of power outages.
 - Improving the predictive capability of grid reliability and informing decision-making.
- This project will likely lead to multiple extramural research supports, including the NSF Humans, Disasters, and the Built Environment (HDBE) program, and the NASA Land-Cover and Land-Use Change (LCLUC), Future Investigators in NASA Earth and Space Science and Technology (FINESST) programs.

Research Impact

