Project 1: Next-level Grid Resilience by Utilizing Sensors in Distributed Power Converters – **Ali Bazzi**

UCONN TECH PARK

Project Team:

PI- Dr. Ali Bazzi **Requested Funding:** ~\$88k, Two-year effort **Motivation and Objectives:**

- Power converters in distributed energy resources have built-in sensors currently under-utilized and inaccessible to utilities
- Data from distributed sensors can be used to detect and respond to grid disturbances in real-time
- Understand how data from distributed sensors can be used to detect and respond to grid disturbances in real-time, such as voltage sags and frequency variations

Approach:

- Effort is focused on modeling, simulating and building a small-scale AC microgrid with solar PV arrays and storage systems.
- Converter sensor data are collected and fed to the optimal energy management system.
- Data are then processed for critical information by using logic-based and AI techniques that further enhance observability and latest distributed oscillation detection with resilience against contaminated measurements.

Max. Power Tracking Optima Solar Inverter AC Filter Sensor Data Distribution Collection Power Flow Solar PV Arrays Optimal Energy Management Charge/Discharge Control Point of 0000 Common Transforme AC Filter Coupling Distribution (PCC) System Li-ion Batteries Legend Battery Inverter/Rectifier High-sampling Freq. Sensor Power Connection Control Connection

Proposed microgrid utilizing converter sensors with optimal energy management

Main research tasks:

- Collection of power converter sensors from lab-scale microgrid and simulations including solar PV, Li-ion battery racks, electronic and passive loads, and grid connections
- Pre-processing of data to identify changes in operational conditions and constraints of existing sources, loads, and grid conditions
- Fault injection in the microgrid and utilization of the sensor data collection for fault diagnosis
- Logic-based and machine learning techniques with PCA-based feature selection and Bayesian filter techniques for fault diagnosis

